- DICOM标准详解
浩瀚之水_csdn
三维图像dcm
DICOM(DigitalImagingandCommunicationsinMedicine)标准是医学图像和相关信息的数字图像通信的国际标准。以下是DICOM标准的详细内容:一、概述DICOM标准由医学图像处理和通信的专业组织DICOM标准委员会(DICOMStandardsCommittee)负责维护和更新。它定义了医学影像设备(如X射线、CT扫描、MRI等)生成、存储、传输和显示的规范,以
- nnUNet V2修改网络——替换为U-Net V2
w1ndfly
nnU-NetV2修改网络人工智能深度学习计算机视觉卷积神经网络机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。U-NetV2是一种先进的医学图像分割模型,它通过改进的跳跃连接和语义细节注入(SDI)模块,有效地融合了高级语义信息和低级细节信息,从而显著提升了分割精度。相比原始U-Net,U-NetV2在多个数据集上表现出更
- ACC-UNet网络学习笔记(2023 MICCAI )
刘若里
论文阅读网络学习笔记
摘要1.背景说明近十年来的变化——ViT的引入改变了CV的基本模式。同样,医学图像领域也发生了一样的变化,最具影响力的网络结构——U-Net已和Transformer相结合而被重新设计。最近,卷积模型在视觉中的有效性正在被重新研究,比如一些开创性的工作——ConvNeXt,它将ResNet的性能提升到了SwinTransformer一样甚至更高的水平!2.原因&目的由此获得灵感,Author打算改
- 一切皆是映射:强化学习在医疗诊断中的应用:挑战与机遇
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《一切皆是映射:强化学习在医疗诊断中的应用:挑战与机遇》关键词强化学习,医疗诊断,图像识别,数据预处理,算法优化摘要随着医疗技术的发展,医疗诊断的准确性和效率越来越受到关注。强化学习作为机器学习的一种重要方法,已经在多个领域中展示了其强大的学习能力和适应性。本文将探讨强化学习在医疗诊断中的应用,包括其在医学图像分析、实验室诊断和个性化治疗等方面的优势与挑战。通过详细分析强化学习的基本概念、架构设计
- CTK 库教程:从入门到进阶
江奎钰
CTK库教程:从入门到进阶CTKAsetofcommonsupportcodeformedicalimaging,surgicalnavigation,andrelatedpurposes.项目地址:https://gitcode.com/gh_mirrors/ct/CTK1.项目介绍CTK(CommonToolkit)是一个专注于生物医学图像计算的支持库。它的目标是提供那些现有工具包未涵盖的功能
- 【影像组学pyradiomics学习笔记】pyradiomics安装及介绍
Gu104
学习笔记
pyradiomics是一个开源的python包,用于医学图像的影像组学特征提取。官方网址:https://pyradiomics.readthedocs.io/en/latest/index.html
- Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
2301_79306982
ai千问语言模型人工智能
关于数据库和检索方式的选择AIMedicalConsultantforVisualQuestionAnswering(VQA)系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在VQA场景中,你需要对患者上传的图像或文本症状进行语义向量化,以便快速查找相似病例或相关医学图像内容;同时用关系型数据库维护患者基础信息和简单的交互记录即可。AI-Power
- 医学顶会 MICCAI‘24 | LKM-UNet: 大型内核视觉 Mamba UNet 用于医学图像分割
小白学视觉
医学图像处理论文解读MICCAI深度学习医学图像顶会医学图像处理论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:LKM-UNet:LargeKernelVisionMambaUNetforMedicalImageSegmentationLKM-UNet:大型内核视觉MambaUNet用于医学图像分割作者:JinhongWang,JintaiChen,DannyChen,JianWu源码链接:
- U-Net 生物医学图像分割开源项目介绍
祝珺月
U-Net生物医学图像分割开源项目介绍unetU-NetBiomedicalImageSegmentation项目地址:https://gitcode.com/gh_mirrors/une/unet1.项目基础介绍及主要编程语言U-Net是由IntelAI开发的一个生物医学图像分割的开源项目。该项目基于TensorFlow和Keras框架,使用Python语言编写,旨在为医学图像分析提供高效的解决
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- VM-UNet: 基于Vision Mamba UNet的医学图像分割项目推荐
翟洁英
VM-UNet:基于VisionMambaUNet的医学图像分割项目推荐VM-UNet项目地址:https://gitcode.com/gh_mirrors/vm/VM-UNet1.项目基础介绍和主要编程语言VM-UNet是一个基于VisionMambaUNet架构的开源项目,专门用于医学图像分割。该项目的主要编程语言是Python。VM-UNet结合了状态空间模型(StateSpaceModel
- 3D UNet和Swin-UNETR
学無芷境
计算机视觉
3DUNet和Swin-UNETR都是用于医学图像分析的深度学习网络,它们对三维(3D)数据进行特征提取和分割。3DUNet3DUNet是UNet架构的一个变体,专门设计用于处理三维医学图像数据。UNet最初是为二维(2D)图像分割任务设计的,具有典型的编码器-解码器结构。3DUNet扩展了这种架构,以便更好地处理具有深度信息的体积数据,如CT或MRI扫描。主要特点:编码器:逐渐下采样图像,提取并
- 3D U-Net CNN医学图像分割项目教程
尤辰城Agatha
3DU-NetCNN医学图像分割项目教程3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN1.项目介绍3DU-NetCNN是由Ellisdg开发的Python实现,专门用于医学图像
- 大数据最新医学图像分割 3D nnUNet全流程快速实现_医学图像分割步骤
2401_84182020
程序员大数据
第一步:选择一个你能找的路径位置(这很重要),在这个位置打开终端,输入gitclonehttps://github.com/MIC-DKFZ/nnUNet.git,将nnUNet的代码下载到这个位置第二步:终端内定位到下载的nnUNet文件夹cdnnUNet,或者直接在对应位置打开终端第三步:开始安装,pipinstall-e.2数据整理2.1数据存放形式首先,nnUNet有自己的一套数据文件夹的
- 3D卷积神经网络:原理、应用与深入解析
从零开始学习人工智能
cnn人工智能神经网络目标跟踪3dopencv
3D卷积原理3D卷积,或称为三维卷积,是卷积神经网络(CNN)中的一种技术,用于处理三维数据,如医学图像(如MRI、CT扫描)或视频数据。与标准的二维卷积(处理图像)不同,3D卷积在三个维度(通常是深度、高度和宽度)上操作。在这个图示中,我们可以看到一个3x3x3的卷积核(也称为滤波器或特征检测器)在一个5x5x5的输入数据块上滑动。在每个位置,卷积核与其覆盖的输入数据块的部分进行元素乘法并求和,
- Python小项目:利用U-net完成细胞图像分割
利用U-Net完成细胞图像分割的详细指南在生物医学领域,细胞图像分割是一个关键步骤,能够帮助研究人员分析细胞结构和功能。U-Net作为一种强大的卷积神经网络结构,广泛应用于医学图像分割任务。本文将详细介绍如何利用U-Net完成细胞图像分割项目,涵盖从数据准备到模型部署的各个步骤。项目步骤概览数据准备数据预处理构建U-Net模型训练模型模型评估图像分割结果可视化调优和优化部署和应用1.数据准备收集数
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- cornerstonejs介绍
花花进修
DICOM医学影像查看器html5javascriptnpmyarn
Cornerstone.js是一个用于医疗成像应用程序的开源JavaScript库。它专门设计用于在Web浏览器中处理和显示DICOM(数字成像和通信在医学领域)图像。Cornerstone.js为开发者提供了强大的工具,可以轻松构建功能丰富的医学图像查看器,广泛应用于放射学、病理学、超声成像等领域。特点高性能图像渲染:支持大尺寸医学图像的快速渲染,包括CT扫描、MRI、X光片等。利用GPU加速(
- Unet改进10:在不同位置添加CPCA||通道先验卷积注意力机制
AICurator
Unet改进专栏深度学习神经网络unet语义分割
本文内容:在不同位置添加CPCA注意力机制目录论文简介1.步骤一2.步骤二3.步骤三4.步骤四论文简介低对比度和显著的器官形状变化等特征经常出现在医学图像中。现有注意机制的自适应能力普遍不足,限制了医学影像分割性能的提高。本文提出了一种有效的通道先验卷积注意(CPCA)方法,该方法支持通道和空间维度上注意权重的动态分布。通过采用多尺度深度卷积模块,有效地提取空间关系,同时保留先验通道。CPCA具有
- 2-79 基于matlab的卷积稀疏的形态成分分析的医学图像融合
顶呱呱程序
matlab工程应用matlab计算机视觉人工智能CS-MCA模型医学图像融合卷积稀疏的形态成分分析
基于matlab的卷积稀疏的形态成分分析的医学图像融合,基于卷积稀疏性的形态分量分析(CS-MCA)的稀疏表示(SR)模型,用于像素级医学图像融合。通过CS-MCA模型使用预先学习的字典获得其卡通和纹理组件的CSR。然后,合并所有源图像的稀疏系数,并使用相应的字典重建融合分量。最后,实现融合图像计算。程序已调通,可直接运行。2-79卷积稀疏的形态成分分析-小红书(xiaohongshu.com)
- fpga图像处理实战-白色顶帽变换
梦梦梦梦子~
OV5640+图像处理图像处理计算机视觉人工智能
白色顶帽白色顶帽(WhiteTop-HatTransform),又称顶帽变换,是一种形态学操作,主要用于突出图像中比周围区域更亮的细节。它特别适用于从复杂背景中提取亮区域或对象。白色顶帽操作在图像处理中的应用广泛,特别是在医学图像、工业检测和其他需要增强特定亮区域的应用中。基本原理白色顶帽变换是通过将图像进行开运算(OpeningOperation)后,再从原始图像中减去开运算的结果来实现的。开运
- 线性代数在卷积神经网络(CNN)中的体现
科学的N次方
人工智能线性代数cnn人工智能
案例:深度学习中的卷积神经网络(CNN)在图像识别领域,卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一个广泛应用深度学习模型,它在人脸识别、物体识别、医学图像分析等方面取得了显著成效。CNN中的核心操作——卷积,就是一个直接体现线性代数应用的例子。假设我们正在训练一个用于识别猫和狗的图像分类器,原始输入是一幅RGB彩色图片,可以将其视为一个高度、宽度和通道数(R
- 图像算法实习生--面经1
小豆包的小朋友0217
算法
系列文章目录文章目录系列文章目录前言一、为什么torch里面要用optimizer.zero_grad()进行梯度置0二、Unet神经网络为什么会在医学图像分割表现好?三、transformer相关问题四、介绍一下胶囊网络的动态路由五、yolo系列出到v9了,介绍一下你最熟悉的yolo算法六、一阶段目标检测算法和二阶段目标检测算法有什么区别?七、讲一下剪枝八、讲一下PTQandQAT量化的区别九、
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- e_ophtha_MA眼底数据集—根据微血管瘤标注Mask绘制Contour轮廓图
curemoon
眼底医学图像处理:微血管瘤Microaneurysm检测分割采用数据集e_ophtha中的e_ophtha_MA,此数据集可从互联网下载实现根据微血管瘤标注Mask,在原图绘制轮廓图,以直观了解微血管瘤,以便检测分割微血管瘤1.可展示数据集中原图和绘制轮廓图的并列拼接图2.可保存Mask,原图,根据标注绘制轮廓图的眼底图的拼接图1.原图和绘制轮廓图的并列拼接图2.保存Mask,原图,根据标注绘制轮
- 2024年生物医学、医学图像与信号处理国际会议(ICBMISP2024)
anana_xu
信号处理大数据人工智能智慧城市自动化制造
2024年生物医学、医学图像与信号处理国际会议(ICBMISP2024)会议简介2024年国际生物医学、医学成像和信号处理会议(ICBMISP2024)很高兴邀请您提交主题为“生物医学、医学图像和信号处理的当前挑战和未来前景”的原稿。通过ICBMISP2024,生物医学、医学成像和信号处理三个重要领域的完美融合将为研究人员、农学家、政策制定者、年轻人,特别是行业专家提供一个平台,让他们聚集、分享经
- 压缩感知——革新数据采集的科学魔法
superdont
计算机视觉人工智能算法计算机视觉opencv系统地学习Pythonpython机器学习
引言:在数字时代,数据以及数据的收集和处理无处不在。压缩感知(CompressedSensing,CS)是一种新兴的数学框架,它挑战了我们传统上对数据采集和压缩的看法,给医学图像、天文观测、环境监测等领域带来了颠覆性的影响。但到底什么是压缩感知,它又为何如此重要呢?本文将为你深入浅出地解释。压缩感知压缩感知(CS)与传统数据压缩的差异:传统信息论告诉我们,数据被采集后通常需要进行压缩以便于存储和传
- CT-CTA不理解的点
qq_1248742467
pytorch
由于是将训练CT数据的模型用来跑MRI,因此有些操作不是很理解,并且也不会,请教哈各位大佬Question1首先使用一个生成模型netG_A2B将输入real_A2转换成输出fake_B,这通常是在如图像到图像的转换任务中常见的做法,例如在使用对抗生成网络(GANs)来增强医学图像或改变图像风格的应用中。然后利用函数to_windowdata将real_B和生成的fake_B通过窗宽(WW)和窗位
- Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
AI浩
高质量人类CV论文翻译深度学习人工智能计算机视觉
摘要在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算
- PyQt Python 使用 VTK ITK 进行分割 三维重建 医学图像可视化系统 流程
恋恋西风
PythonpyqtpythonVTKITK
效果:重建流程:1.输入可以读取DICOM,niinrrd等数据设置读取器以加载DICOM图像系列。使用itk::GDCMImageIO作为DICOM图像的输入输出接口。使用itk::GDCMSeriesFileNames获取指定路径下的所有DICOM文件名。使用itk::ImageSeriesReader读取DICOM图像序列,并将其作为3D图像存储。2.分割创建itk::ThresholdIm
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">