- OpenMVG(EXIF、畸变、仿射特征、特征匹配)
江河地笑
C++(图形图像)算法
本人之前也研究过OpenMVS但是对于OpenMVG只是原理层次的了解,因此乘着过年期间对这个库进行详细的学习。目录1OpenMVG编译与简单测试1.1sfm_data.json获取1.2计算特征2OpenMVG整个流程的运行测试3OpenMVG实战3.1SVG绘制3.2解析图片的EXIF信息3.3光学畸变3.4提取图像中的仿射特征点3.5对图像进行特征匹配(K-VLD)1OpenMVG编译与简单
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 《PackNet:3D Packing for Self-Supervised Monocular Depth Estimation》论文笔记
m_buddy
#DepthEstimationPackNet
参考代码:packnet-sfm1.概述导读:这篇文章提出了一种自监督的深度估计方法,其使用视频序列与运动信息作为输入,用网络去估计深度信息/相机位姿,并用最小重构误差去约束整个训练的过程从而实现自监督。文章的创新点主要体现为:使用3D卷机作为深度编解码网络,在相机位姿的6d信息基础上对平移分量进行约束,提出了一个新的数据集DDAD(DenseDepthforAutomatedDriving)。单
- 3D Gaussian Splatting-实时辐射场渲染技术
VT LI
gpu并行编程3d高斯飞溅图形渲染论文ai
引用自:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_high.pdf概述:该论文介绍了一种用于实时辐射场渲染的3D高斯点渲染技术。其基本原理是:一:首先从SfM校准的图像及其对应的稀疏点云中提取出场景信息。解析:1.SfM校准的图像是指通过StructurefromMotion(SfM
- 基于Pix4Dmapper软件的运动结构恢复SFM无人机遥感影像三维模型重建
疯狂学习GIS
前面两篇博客分别基于不同软件、不同方法,详细讲解了空间三维模型建立的过程: 博客1(https://www.jianshu.com/p/20dede2650a9):基于3DSOM的侧影轮廓方法物体空间三维模型重建。 博客2(https://www.jianshu.com/p/fa2bf99624aa):基于EinScan-S的编码结构光方法物体空间三维模型重建。 那么本次,综合以上两篇博
- 三维重建经典论文合集汇总
深蓝学院
人工智能三维重建视觉
三维重建涉及计算机视觉、图形学等多门知识,是一套非常复杂的系统。经典三维重建系统包括整个pipeline从相机标定、基础矩阵与本质矩阵估计、特征匹配到运动恢复结构(SFM),从SFM到稠密点云重建、表面重建、纹理贴图。其中,熟悉SFM的工程师已经是行业内的佼佼者,能掌握稠密点云重建与表面重建的工程师更是凤毛麟角。图1经典三维重建系统pipeline三维重建是当下计算机视觉的一个研究热点,虽然从业者
- 【三维重建】运动恢复结构(SfM)
Patrick star`
算法
运动恢复结构是通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像机参数。欧式结构恢复(内参已知,外参未知)欧式结构恢复问题:已知:1、n个三维点在m张图像中的对应点的像素坐标2、相机内参求解:1、n个三维点坐标2、m个摄像机的外参数R、T通过极几何我们知道本质矩阵和基础矩阵【三维重建】对极几何-CSDN博客求得了基础矩阵F,知道相机内参,就能求得本质矩阵E核心问题就在于如何从
- 3d gaussian splatting介绍整理
蓝羽飞鸟
DeepLearning3d人工智能
3D高斯分布是用于实时辐射场渲染的3D高斯分布中描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。papergithub本文翻译整理自:blog:Introductionto3DGaussianSplattingDDPMs-Part2给出一些2D图片,用colmap得到稀疏(SfM)点,可重建出逼真的3D场景。3DGS的核心是光栅化技术。这类似于计算机图形学中的三角形光栅化,用于
- 三维重建(6)--多视图几何
Struart_R
三维重建人工智能三维重建计算机视觉
目录一、运动恢复问题(SfM)二、欧式结构恢复问题1、概述2、算法流程3、本质矩阵分解4、欧式结构恢复歧义三、仿射结构恢复问题1、概述2、因式分解法3、仿射结构恢复歧义四、透视结构恢复问题1、概述2、透视结构恢复歧义3、代数方法4、捆绑调整五、P3P问题六、随机采样一致性(RANSAC)一、运动恢复问题(SfM)运动恢复问题:通过三维场景的多张图像,恢复出该场景的三维结构信息以及每张图片对应的摄像
- 【三维重建】运动恢复结构SfM理解记录:初始化与参数估计
小白不懂就多问多学
三维重建
目录一、SfM的认识二、SfM的初始化三、SfM的实现1、投影变换矩阵2、投影过程3、参数初始估计4、最小化重投影误差注意参考文献一、SfM的认识三维重建=图像序列+SfM+MVS+…图像序列:拍摄多视图照片集SfM:能求出每个图像的参数(包括内参和外参),还有稀疏三维结构MVS:是基于SfM的输出下,进行稠密化。还有后续的曲面重建等等。三维重建:综述链接1,链接2;项目链接开源的sfm可以参考c
- 三维重建(7)--运动恢复结构SfM系统解析
Struart_R
三维重建人工智能计算机视觉三维重建三维建模
目录一、SfM系统(两视图)1、特征提取2、特征匹配3、RANSAC求解基础矩阵F4、完整的欧式结构恢复算法流程二、基于增量法的SfM系统(以OpenMVG为例)1、预处理2、图像特征点提取与匹配3、两视图重构点云4、增加新视图,多视图重构一、SfM系统(两视图)对于欧式结构恢复的两视图问题,需要获得三维场景的m张图像的像坐标作为已知条件,求解三维场景结构(即三维点坐标),m个摄像机的外参数R和T
- 最新!无需任何SFM预处理,实现精确相机姿态估计和逼真场景重建
3DCV
人工智能计算机视觉算法学习深度学习
作者:石昊|来源:3DCV在公众号「3DCV」后台,回复「原论文」可获取论文pdf从图像序列中进行相机姿态估计和新视角合成的问题。以往的方法在处理大相机运动时存在困难,或者需要非常长的训练时间。为了解决这个问题,本文提出了一种新的端到端框架,利用三维高斯点云表示场景,并结合视频流中的连续性进行相机姿态估计和新视角合成。与NeRF等方法不同,本文的方法利用显式的点云表示场景,通过利用三维高斯点云的能
- OpenSfM
我愿化作一道辰光
简介OpenSfM是Mapillary公司在github上的开源项目,是封装很好的开源SfM项目之一,同时生成的结果可以快速实现可视化效果。具有较好的可拓展性。配置见github。源码剖析源码结构--bin[写好的脚本]--data[数据]--doc[说明书]--opensfm[源代码]--viewer[可视化]参考Mapillary官网paulinus作者
- 【计算机视觉】基于三维重建和点云处理的扫地机器人寻路
乐心唯帅
计算机视觉人工智能
[摘要]扫地机器人的使用已经越发普及,其中应用到了三维重建的知识。本项目旨在设计由一定数量的图像根据算法完成三维模型的建立,并利用三维数据最终得到扫地机器人的行驶路线,完成打扫机器人成功寻路的任务。本项目采用的方法是SFM-MVS、Colmap、Kinect三种建模方法进行建模,分别由组内不同成员完成,经过亲自采集一定数量的图像集,利用SFM-MVS算法获得对应的三维模型进行2D降维处理,并利用该
- 3D Guassians Splatting相关解读
我宿孤栈
#视觉相关人工智能3d算法
从已有的点云模型出发,以每个点为中心,建立可学习的高斯表达,用Splatting即抛雪球的方法进行渲染,实现高分辨率的实时渲染。1、主要思想1.引入了一种各向异性(anisotropic)的3D高斯分布作为高质量、非结构化的辐射场表达;从SFM点云出发,以每个点为中心生成3D高斯分布;各向异性指从各个方向看上去都长得不一样,即把一个点往不同相机位姿上投影的时候会投出不一样的样子。2.实现了使用GP
- 【研究】聚焦型光场相机等效多相机模型及其运动恢复结构应用
光场视觉
数码相机3d光场
摘要:聚焦型光场相机在运动恢复结构(SFM)和场景重建等领域中的作用日益显现。但是传统SFM算法因聚焦型光场相机具有特殊的结构而难以直接应用。针对这一问题提出一种完整的聚焦型光场相机等效多目相机模型。在此基础上,利用传统多目相机的SFM算法,给出了适用于聚焦型光场相机的位姿估计算法示例和点云三角化算法示例。最后,通过仿真实验和真实场景重建实验验证了本文等效多目相机模型和SFM算法的正确性,进而表明
- ParticleSfM:Exploiting Dense Point Trajectories for Localizing Moving Cameras in the Wild——论文笔记
m_buddy
#3DReconstruction论文阅读计算机视觉人工智能
参考代码:particle-sfm1.概述介绍:基于运动恢复的重建算法其前提假设是所处的是静态场景,但在实际过程中该假设可能是不成立的,这就会导致位姿估计不准确和场景重建出错。为了处理动态场景问题,文章引入视频帧间光流信息作为输入,通过帧间光流信息构建多帧之间初始逐像素传导路径,并由这些路径通过网络推理得到场景中众多路径是否为属于运动物体,同时可以根据路径分类信息得到场景中运动目标的“分割mask
- Ubuntu18.04安装GTSAM库(亲测可用)
RobotsRuning
UbuntuGTSAM
在SLAM(SimultaneousLocalizationandMapping)和SFM(StructurefromMotion)这些复杂的估计问题中,因子图算法以其高效和灵活性而脱颖而出,成为图模型领域的核心技术。GTSAM(GeorgiaTechSmoothingandMapping)库,作为因子图算法的一个杰出代表,由佐治亚理工学院的团队开发,是机器人学和计算机视觉领域里数据平滑和地图构建
- 算法学习-BM1:链表反转
xyx112
c++链表算法
算法学习BM1链表反转https://www.nowcoder.com/practice/75e878df47f24fdc9dc3e400ec6058ca?tpId=295&sfm=html&channel=nowcoder题目描述:给定一个长度为n的链表,反转该链表,输出表头。思路:1.空链表直接返回;2.两个指针,cur当前结点,pre前一个节点(初始为空);3.遍历链表,每到一个节点,断开节
- Ubuntu下COLMAP的编译与安装全攻略
梦想的理由
编译ubuntuubuntulinux运维
文章目录一、前言二、安装依赖库基本的依赖安装CeresSolver安装不需要cuda支持需要cuda支持三、编译colmap四、运行colmap五、总结一、前言在计算机视觉领域,colmap是一款功能强大的开源图像重建工具。它提供了包括SfM(StructurefromMotion)、MVS(Multi-ViewStereo)等在内的多种功能,广泛应用于三维建模、场景理解等领域。对于从事相关研究的
- 3D重建算法综述
小白学视觉
算法神经网络python计算机视觉机器学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达三维重建算法广泛应用于手机等移动设备中,常见的算法有SfM,REMODE和SVO等。2.2双目/多目视觉双目视觉主要利用左右相机得到的两幅校正图像找到左右图片的匹配点,然后根据几何原理恢复出环境的三维信息。但该方法难点在于左右相机图片的匹配,匹配地不精确都会影响最后算法成像的效果。多目视觉采用三个或三个以上摄像机来提高匹配的精度
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】三维重建
格图素书
目标检测人工智能计算机视觉
目录前言几个高频面试题目“基于RGB-D相机的三维重建"和传统的SFM和SLAM算法有什么区别?
- 基于单片机音乐弹奏播放DS1302万年历显示及源程序
bbxyliyang
51单片机嵌入式硬件单片机
一、系统方案1、本设计采用51单片机作为主控器。2、DS1302计时显示年月日时分秒。3、按键可以弹奏以及播放音乐,内置16首音乐。二、硬件设计原理图如下:三、单片机软件设计1、首先是系统初始化/时钟显示**/voidinit_1602_ds1302(){write_sfm2_ds1302(1,1,shi);//显示时write_sfm2_ds1302(1,4,fen);//显示分write_sf
- 一起自学SLAM算法:7.6 SFM、BA和SLAM比较
机器人研究猿
一起自学SLAM算法算法人工智能机器人
连载文章,长期更新,欢迎关注:写在前面第1章-ROS入门必备知识第2章-C++编程范式第3章-OpenCV图像处理第4章-机器人传感器第5章-机器人主机第6章-机器人底盘第7章-SLAM中的数学基础
- VINS-Mono-VIO初始化 (二:SFM中的三角化方法)
Rhys___
VINS系列专栏算法线性代数矩阵自动驾驶c++
前面预积分对IMU的数据进行预处理,现在需要对视觉的信息进行处理,在VINS中视觉初始化的处理就是使用SFM,但是这里的三角化他没有用opencv给的函数,而是用自己的方法进行三角化。这里SFM的方式就是现在滑窗里面找到枢纽帧,然后枢纽帧和最后一帧进行三角化获得3D点,然后通过PNP计算滑窗中其他关键帧的位姿,同时也三角化出更多新的点,顺序是先从枢纽帧向右再向左,然后再遍历只被中间帧看到的点进行三
- OpenCV实现SfM(三):多目三维重建
看不见我呀
立体标定基础
http://blog.csdn.net/AIchipmunk/article/details/51232861版权声明:本文为博主原创文章,未经博主允许不得转载。目录(?)[+]注意:本文中的代码必须使用OpenCV3.0或以上版本进行编译,因为很多函数是3.0以后才加入的。目录:问题简化求第三个相机的变换矩阵加入更多图像代码实现测试思考下载问题简化终于有时间来填坑了,这次一口气将双目重建扩展为
- hive自定义UDF实现md5加密函数
青眼酷白龙
Hivehive
hive自定义UDF实现md5加密函数1pom.xm配置4.0.0com.itcastUDFtest1.0-SNAPSHOTorg.apache.hivehive-exec1.2.1org.apache.hadoophadoop-common2.7.4org.apache.maven.pluginsmaven-shade-plugin2.2packageshade*:*META-INF/*.SFM
- 三维重建代码实现(二)
风之旅人c
写在开头最近在学习三维重建的相关知识,打算将三维重建SFM的整个过程用代码的形式梳理一下,本章节主要实现相机标定。这里我们假定你有一定的三维重建相关的基本知识,作者在这里推荐高翔博士的《视觉SLAM十四讲:从理论到实践》,在B站上有高翔博士的讲解视频。相机标定我们首先做一个约定:二维坐标点:,三维点坐标。则他们的坐标对应的齐次形式是:,三维点坐标。两者之间的关系是:其中是一个比例参数,是相机外参,
- A 3D Morphable Model learnt from 10,000 faces
深蓝蓝蓝蓝蓝
三套人脸数据模型:BFM,Facewarehouse,SFM,LSFM本文提到的是LSFM,提供了9663个不同身份人的3DMM模型和对应人的年龄,性别和种族背景48%男性,52%女性,82%白人,9%亚裔,5%混血,3%黑人,1%其他构建了一套全自动构建3DMM的流程:1.使用渲染图自动提取landmark2.在landmark的引导将原始3D模板形变已匹配输入的3D数据3.构建一个全局PCA,
- bundle linux 安装,Bundler 在linux下的安装
买手联盟CE橙子
bundlelinux安装
一、什么是BundlerBundler是一个采用C和C++开发的称为sfm(struct-from-motion)的系统,它能够利用无序的图片集合(例如来自网络的图片)重建出3D的模型。最早的版本被用在PhotoTourism的项目上。Bundler的输入是一些图像、图像特征以及图像匹配信息,输出则是一个根据这些图像反应的场景的3D重建模型,伴有少量识别得到的相机以及场景几何信息。系统借用一个由L
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交