浅谈APM系列-----ArduCopter启动过程

APM和PX4之间的联系

位置:X:\ardupilot\libraries\AP_HAL_PX4\HAL_PX4_Class.cpp

const AP_HAL::HAL& AP_HAL::get_HAL() {
    static const HAL_PX4 hal_px4;
    return hal_px4;
}

下面是进程启动时,运行的代码:

void HAL_PX4::run(int argc, char * const argv[], Callbacks* callbacks) const
{
    int i;
    const char *deviceA = UARTA_DEFAULT_DEVICE;
    const char *deviceC = UARTC_DEFAULT_DEVICE;
    const char *deviceD = UARTD_DEFAULT_DEVICE;
    const char *deviceE = UARTE_DEFAULT_DEVICE;
    const char *deviceF = UARTF_DEFAULT_DEVICE;

    if (argc < 1) {
        printf("%s: missing command (try '%s start')", 
               SKETCHNAME, SKETCHNAME);
        usage();
        exit(1);
    }

    assert(callbacks);
    g_callbacks = callbacks;//传入参数

    for (i=0; i i + 1) {
                deviceA = strdup(argv[i+1]);
            } else {
                printf("missing parameter to -d DEVICE\n");
                usage();
                exit(1);
            }
        }

        if (strcmp(argv[i], "-d2") == 0) {
            // set uartC terminal device
            if (argc > i + 1) {
                deviceC = strdup(argv[i+1]);
            } else {
                printf("missing parameter to -d2 DEVICE\n");
                usage();
                exit(1);
            }
        }

        if (strcmp(argv[i], "-d3") == 0) {
            // set uartD terminal device
            if (argc > i + 1) {
                deviceD = strdup(argv[i+1]);
            } else {
                printf("missing parameter to -d3 DEVICE\n");
                usage();
                exit(1);
            }
        }

        if (strcmp(argv[i], "-d4") == 0) {
            // set uartE 2nd GPS device
            if (argc > i + 1) {
                deviceE = strdup(argv[i+1]);
            } else {
                printf("missing parameter to -d4 DEVICE\n");
                usage();
                exit(1);
            }
        }

        if (strcmp(argv[i], "-d5") == 0) {
            // set uartF
            if (argc > i + 1) {
                deviceF = strdup(argv[i+1]);
            } else {
                printf("missing parameter to -d5 DEVICE\n");
                usage();
                exit(1);
            }
        }
    }
 
    usage();
    exit(1);
}

在NUTTX系统启动之后,通过脚本传递相关参数,并创建任务。下面是启动方法:

static void usage(void)
{
    printf("Usage: %s [options] {start,stop,status}\n", SKETCHNAME);
    printf("Options:\n");
    printf("\t-d  DEVICE         set terminal device (default %s)\n", UARTA_DEFAULT_DEVICE);
    printf("\t-d2 DEVICE         set second terminal device (default %s)\n", UARTC_DEFAULT_DEVICE);
    printf("\t-d3 DEVICE         set 3rd terminal device (default %s)\n", UARTD_DEFAULT_DEVICE);
    printf("\t-d4 DEVICE         set 2nd GPS device (default %s)\n", UARTE_DEFAULT_DEVICE);
    printf("\t-d5 DEVICE         set uartF (default %s)\n", UARTF_DEFAULT_DEVICE);
    printf("\n");
}

HAL_PX4::run创建任务“main_loop ”,这里面调用的APM中的"set"和"loop"

static int main_loop(int argc, char **argv)
{
    hal.uartA->begin(115200);
    hal.uartB->begin(38400);
    hal.uartC->begin(57600);
    hal.uartD->begin(57600);
    hal.uartE->begin(57600);
    hal.scheduler->init();

    // init the I2C wrapper class
    PX4_I2C::init_lock();
    
    /*
      run setup() at low priority to ensure CLI doesn't hang the
      system, and to allow initial sensor read loops to run
     */
    hal_px4_set_priority(APM_STARTUP_PRIORITY);//58

    schedulerInstance.hal_initialized();

    g_callbacks->setup();//调用APM的ArduCopter.cpp的setup
    hal.scheduler->system_initialized();

    perf_counter_t perf_loop = perf_alloc(PC_ELAPSED, "APM_loop");//measure the time elapsed performing an event(测量执行一个事件的时间)
    perf_counter_t perf_overrun = perf_alloc(PC_COUNT, "APM_overrun");//count the number of times an event occurs(计算事件发生的次数)
    struct hrt_call loop_overtime_call;

    thread_running = true;//线程正式开始运行

    /*
      switch to high priority for main loop
     */
    hal_px4_set_priority(APM_MAIN_PRIORITY);

    while (!_px4_thread_should_exit) {
        perf_begin(perf_loop);
        
        /*
          this ensures a tight loop waiting on a lower priority driver
          will eventually give up some time for the driver to run. It
          will only ever be called if a loop() call runs for more than
          0.1 second
         */
        hrt_call_after(&loop_overtime_call, 100000, (hrt_callout)loop_overtime, nullptr);

        g_callbacks->loop();//调用APM的ArduCopter.cpp的loop

        if (px4_ran_overtime) {
            /*
              we ran over 1s in loop(), and our priority was lowered
              to let a driver run. Set it back to high priority now.
             */
            hal_px4_set_priority(APM_MAIN_PRIORITY);//180
            perf_count(perf_overrun);//count the number of times an event occurs(计算事件发生的次数)
            px4_ran_overtime = false;//设置为false,恢复高优先级
        }

        perf_end(perf_loop);

        /*
          give up 250 microseconds of time, to ensure drivers get a
          chance to run. This relies on the accurate semaphore wait
          using hrt in semaphore.cpp
         */
        hal.scheduler->delay_microseconds(250);//250us
    }
    thread_running = false;//线程结束
    return 0;
}

 上面的代码调用了下面的函数,该程序将主程序的优先级设置低,让APM中的其他任务运行。

注意:这里的主程序的优先级会被周期性的修改。

 

/*
  this is called when loop() takes more than 1 second to run. If that
  happens then something is blocking for a long time in the main
  sketch - probably waiting on a low priority driver. Set the priority
  of the APM task low to let the driver run.
 */
static void loop_overtime(void *)
{
    hal_px4_set_priority(APM_OVERTIME_PRIORITY);//10
    px4_ran_overtime = true;//设置为true,设置为低优先级
}

 

APM的代码

位置:X:\ardupilot\ArduCopter\ArduCopter.cpp,该文件的最后一行为

AP_HAL_MAIN_CALLBACKS(&copter);

该行只是一个简单的宏定义

位置:X:\ardupilot\libraries\AP_HAL\AP_HAL_Main.h

#pragma once

#include "HAL.h"

#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#define AP_MAIN __EXPORT ArduPilot_main
#endif

#ifndef AP_MAIN
#define AP_MAIN main
#endif

#define AP_HAL_MAIN() \
    AP_HAL::HAL::FunCallbacks callbacks(setup, loop); \
    extern "C" {                               \
    int AP_MAIN(int argc, char* const argv[]); \
    int AP_MAIN(int argc, char* const argv[]) { \
        hal.run(argc, argv, &callbacks); \
        return 0; \
    } \
    }

#define AP_HAL_MAIN_CALLBACKS(CALLBACKS) extern "C" { \
    int AP_MAIN(int argc, char* const argv[]); \
    int AP_MAIN(int argc, char* const argv[]) { \
        hal.run(argc, argv, CALLBACKS); \
        return 0; \
    } \
    }

我的个人理解是将代码以C的方式编译,并直接调用"hal.run(argc, argv, CALLBACKS)"

对象"hal"和传参"CALLBACKS",都在下面这个文件中

位置: X:\ardupilot\ArduCopter\Copter.cpp

#include "Copter.h"

#define FORCE_VERSION_H_INCLUDE
#include "version.h"
#undef FORCE_VERSION_H_INCLUDE

const AP_HAL::HAL& hal = AP_HAL::get_HAL();

/*
  constructor for main Copter class
 */
Copter::Copter(void)
    : DataFlash(fwver.fw_string, g.log_bitmask),
    flight_modes(&g.flight_mode1),
    control_mode(STABILIZE),
    scaleLongDown(1),
    simple_cos_yaw(1.0f),
    simple_sin_yaw(0.0f),
    super_simple_last_bearing(0),
    super_simple_cos_yaw(1.0),
    super_simple_sin_yaw(0.0f),
    initial_armed_bearing(0),
    climb_rate(0),
    target_rangefinder_alt(0.0f),
    baro_alt(0),
    baro_climbrate(0.0f),
    land_accel_ef_filter(LAND_DETECTOR_ACCEL_LPF_CUTOFF),
    rc_throttle_control_in_filter(1.0f),
    auto_yaw_mode(AUTO_YAW_LOOK_AT_NEXT_WP),
    yaw_look_at_WP_bearing(0.0f),
    yaw_look_at_heading(0),
    yaw_look_at_heading_slew(0),
    yaw_look_ahead_bearing(0.0f),
    inertial_nav(ahrs),
    pmTest1(0),
    fast_loopTimer(0),
    mainLoop_count(0),
    auto_trim_counter(0),
    in_mavlink_delay(false),
    param_loader(var_info),
    flightmode(&mode_stabilize)
{
    memset(¤t_loc, 0, sizeof(current_loc));

    // init sensor error logging flags
    sensor_health.baro = true;
    sensor_health.compass = true;
}

Copter copter;

这个文件中的"AP_HAL::get_HAL()",在HAL_PX4_Class.cpp文件的最下面有定义。


 其中用到的类HAL_PX4,定义在下面的文件中。这个类中刚好有且只有一个"run"方法。

位置:X:\ardupilot\libraries\AP_HAL_PX4\HAL_PX4_Class.h

#pragma once

#include 

#if CONFIG_HAL_BOARD == HAL_BOARD_PX4

#include "AP_HAL_PX4.h"
#include "AP_HAL_PX4_Namespace.h"
#include 
#include 

class HAL_PX4 : public AP_HAL::HAL {
public:
    HAL_PX4();
    void run(int argc, char* const argv[], Callbacks* callbacks) const override;
};

void hal_px4_set_priority(uint8_t priority);

#endif // CONFIG_HAL_BOARD == HAL_BOARD_PX4

文件中的AP_HAL::HAL,在下面的位置定义

位置:X:\ardupilot\libraries\AP_HAL\HAL.h

#pragma once

class AP_Param;

#include "AP_HAL_Namespace.h"

#include "AnalogIn.h"
#include "GPIO.h"
#include "RCInput.h"
#include "RCOutput.h"
#include "SPIDevice.h"
#include "Storage.h"
#include "UARTDriver.h"
#include "system.h"
#include "OpticalFlow.h"
#if HAL_WITH_UAVCAN
#include "CAN.h"
#endif


#if defined(HAL_NEEDS_PARAM_HELPER)
#include 
class AP_Param_Helper;
#endif

class AP_HAL::HAL {
public:
    HAL(AP_HAL::UARTDriver* _uartA, // console
        AP_HAL::UARTDriver* _uartB, // 1st GPS
        AP_HAL::UARTDriver* _uartC, // telem1
        AP_HAL::UARTDriver* _uartD, // telem2
        AP_HAL::UARTDriver* _uartE, // 2nd GPS
        AP_HAL::UARTDriver* _uartF, // extra1
        AP_HAL::I2CDeviceManager* _i2c_mgr,
        AP_HAL::SPIDeviceManager* _spi,
        AP_HAL::AnalogIn*   _analogin,
        AP_HAL::Storage*    _storage,
        AP_HAL::UARTDriver* _console,
        AP_HAL::GPIO*       _gpio,
        AP_HAL::RCInput*    _rcin,
        AP_HAL::RCOutput*   _rcout,
        AP_HAL::Scheduler*  _scheduler,
        AP_HAL::Util*       _util,
        AP_HAL::OpticalFlow *_opticalflow,
#if HAL_WITH_UAVCAN
        AP_HAL::CANManager* _can_mgr[MAX_NUMBER_OF_CAN_DRIVERS])
#else
        AP_HAL::CANManager** _can_mgr)
#endif
        :
        uartA(_uartA),
        uartB(_uartB),
        uartC(_uartC),
        uartD(_uartD),
        uartE(_uartE),
        uartF(_uartF),
        i2c_mgr(_i2c_mgr),
        spi(_spi),
        analogin(_analogin),
        storage(_storage),
        console(_console),
        gpio(_gpio),
        rcin(_rcin),
        rcout(_rcout),
        scheduler(_scheduler),
        util(_util),
        opticalflow(_opticalflow)
    {
#if HAL_WITH_UAVCAN
        if (_can_mgr == nullptr) {
            for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)
                can_mgr[i] = nullptr;
        } else {
            for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)
                can_mgr[i] = _can_mgr[i];
        }
#endif

        AP_HAL::init();
    }

    struct Callbacks {
		/* 纯虚函数,该类也就是一个抽象类,不能用来实例化对象的,只能用来作基类*/
        virtual void setup() = 0;
        virtual void loop() = 0;
    };

    struct FunCallbacks : public Callbacks {
        FunCallbacks(void (*setup_fun)(void), void (*loop_fun)(void));

        void setup() override { _setup(); }
        void loop() override { _loop(); }

    private:
        void (*_setup)(void);
        void (*_loop)(void);
    };

    virtual void run(int argc, char * const argv[], Callbacks* callbacks) const = 0;

    AP_HAL::UARTDriver* uartA;
    AP_HAL::UARTDriver* uartB;
    AP_HAL::UARTDriver* uartC;
    AP_HAL::UARTDriver* uartD;
    AP_HAL::UARTDriver* uartE;
    AP_HAL::UARTDriver* uartF;
    AP_HAL::I2CDeviceManager* i2c_mgr;
    AP_HAL::SPIDeviceManager* spi;
    AP_HAL::AnalogIn*   analogin;
    AP_HAL::Storage*    storage;
    AP_HAL::UARTDriver* console;
    AP_HAL::GPIO*       gpio;
    AP_HAL::RCInput*    rcin;
    AP_HAL::RCOutput*   rcout;//输出到电机的
    AP_HAL::Scheduler*  scheduler;
    AP_HAL::Util        *util;
    AP_HAL::OpticalFlow *opticalflow;
#if HAL_WITH_UAVCAN
    AP_HAL::CANManager* can_mgr[MAX_NUMBER_OF_CAN_DRIVERS];
#else
    AP_HAL::CANManager** can_mgr;
#endif
};

文件中的AP_HAL是一个命名空间

位置:X:\ardupilot\libraries\AP_HAL\AP_HAL_Namespace.h

#pragma once

#include "string.h"
#include "utility/functor.h"

namespace AP_HAL {

    /* Toplevel pure virtual class Hal.*/
    class HAL;

    /* Toplevel class names for drivers: */
    class UARTDriver;
    class I2CDevice;
    class I2CDeviceManager;
    class Device;

    class SPIDevice;
    class SPIDeviceDriver;
    class SPIDeviceManager;

    class AnalogSource;
    class AnalogIn;
    class Storage;
    class DigitalSource;
    class GPIO;
    class RCInput;
    class RCOutput;
    class Scheduler;
    class Semaphore;
    class OpticalFlow;

    class CANManager;
    class CAN;

    class Util;

    /* Utility Classes */
    class Print;
    class Stream;
    class BetterStream;

    /* Typdefs for function pointers (Procedure, Member Procedure)

       For member functions we use the FastDelegate delegates class
       which allows us to encapculate a member function as a type
     */
    typedef void(*Proc)(void);
    FUNCTOR_TYPEDEF(MemberProc, void);

    /**
     * Global names for all of the existing SPI devices on all platforms.
     */

    enum SPIDeviceType {
        // Devices using AP_HAL::SPIDevice abstraction
        SPIDevice_Type              = -1,
    };

    // Must be implemented by the concrete HALs.
    const HAL& get_HAL();
}

无论如何,请相信自己


请继续期待。。。。。

你可能感兴趣的:(浅谈APM系列,APM注释,阅读APM,浅谈APM系列)