这是关于pandas的简短介绍,主要面向新用户。可以参阅Cookbook了解更复杂的使用方法。
习惯上,我们做以下导入
1
2
3
|
In
[
1
]
:
import
pandas
as
pd
In
[
2
]
:
import
numpy
as
np
In
[
3
]
:
import
matplotlib
.
pyplot
as
plt
|
使用传递的值列表序列创建序列, 让pandas创建默认整数索引
1
2
3
4
5
6
7
8
9
10
|
In
[
4
]
:
s
=
pd
.
Series
(
[
1
,
3
,
5
,
np
.
nan
,
6
,
8
]
)
In
[
5
]
:
s
Out
[
5
]
:
0
1
1
3
2
5
3
NaN
4
6
5
8
dtype
:
float64
|
使用传递的numpy数组创建数据帧,并使用日期索引和标记列.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
In
[
6
]
:
dates
=
pd
.
date_range
(
'20130101'
,
periods
=
6
)
In
[
7
]
:
dates
Out
[
7
]
:
<
class
'pandas.tseries.index.DatetimeIndex'
>
[
2013
-
01
-
01
,
.
.
.
,
2013
-
01
-
06
]
Length
:
6
,
Freq
:
D
,
Timezone
:
None
In
[
8
]
:
df
=
pd
.
DataFrame
(
np
.
random
.
randn
(
6
,
4
)
,
index
=
dates
,
columns
=
list
(
'ABCD'
)
)
In
[
9
]
:
df
Out
[
9
]
:
A
B
C
D
2013
-
01
-
01
0.469112
-
0.282863
-
1.509059
-
1.135632
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
0.271860
2013
-
01
-
05
-
0.424972
0.567020
0.276232
-
1.087401
2013
-
01
-
06
-
0.673690
0.113648
-
1.478427
0.524988
|
使用传递的可转换序列的字典对象创建数据帧.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
In
[
10
]
:
df2
=
pd
.
DataFrame
(
{
'A'
:
1.
,
.
.
.
.
:
'B'
:
pd
.
Timestamp
(
'20130102'
)
,
.
.
.
.
:
'C'
:
pd
.
Series
(
1
,
index
=
list
(
range
(
4
)
)
,
dtype
=
'float32'
)
,
.
.
.
.
:
'D'
:
np
.
array
(
[
3
]
*
4
,
dtype
=
'int32'
)
,
.
.
.
.
:
'E'
:
pd
.
Categorical
(
[
"test"
,
"train"
,
"test"
,
"train"
]
)
,
.
.
.
.
:
'F'
:
'foo'
}
)
.
.
.
.
:
In
[
11
]
:
df2
Out
[
11
]
:
A
B
C
D
E
F
0
1
2013
-
01
-
02
1
3
test
foo
1
1
2013
-
01
-
02
1
3
train
foo
2
1
2013
-
01
-
02
1
3
test
foo
3
1
2013
-
01
-
02
1
3
train
foo
|
所有明确类型
1
2
3
4
5
6
7
8
9
|
In
[
12
]
:
df2
.
dtypes
Out
[
12
]
:
A
float64
B
datetime64
[
ns
]
C
float32
D
int32
E
category
F
object
dtype
:
object
|
如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
In
[
13
]
:
df2
.
<
TAB
>
df2
.
A
df2
.
boxplot
df2
.
abs
df2
.
C
df2
.
add
df2
.
clip
df2
.
add_prefix
df2
.
clip_lower
df2
.
add_suffix
df2
.
clip_upper
df2
.
align
df2
.
columns
df2
.
all
df2
.
combine
df2
.
any
df2
.
combineAdd
df2
.
append
df2
.
combine_first
df2
.
apply
df2
.
combineMult
df2
.
applymap
df2
.
compound
df2
.
as_blocks
df2
.
consolidate
df2
.
asfreq
df2
.
convert_objects
df2
.
as_matrix
df2
.
copy
df2
.
astype
df2
.
corr
df2
.
at
df2
.
corrwith
df2
.
at_time
df2
.
count
df2
.
axes
df2
.
cov
df2
.
B
df2
.
cummax
df2
.
between_time
df2
.
cummin
df2
.
bfill
df2
.
cumprod
df2
.
blocks
df2
.
cumsum
df2
.
bool
df2
.
D
|
如你所见, 列 A, B, C, 和 D 也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.
参阅基础部分
查看帧顶部和底部行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
In
[
14
]
:
df
.
head
(
)
Out
[
14
]
:
A
B
C
D
2013
-
01
-
01
0.469112
-
0.282863
-
1.509059
-
1.135632
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
0.271860
2013
-
01
-
05
-
0.424972
0.567020
0.276232
-
1.087401
In
[
15
]
:
df
.
tail
(
3
)
Out
[
15
]
:
A
B
C
D
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
0.271860
2013
-
01
-
05
-
0.424972
0.567020
0.276232
-
1.087401
2013
-
01
-
06
-
0.673690
0.113648
-
1.478427
0.524988
|
显示索引,列,和底层numpy数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
In
[
16
]
:
df
.
index
Out
[
16
]
:
<
class
'pandas.tseries.index.DatetimeIndex'
>
[
2013
-
01
-
01
,
.
.
.
,
2013
-
01
-
06
]
Length
:
6
,
Freq
:
D
,
Timezone
:
None
In
[
17
]
:
df
.
columns
Out
[
17
]
:
Index
(
[
u
'A'
,
u
'B'
,
u
'C'
,
u
'D'
]
,
dtype
=
'object'
)
In
[
18
]
:
df
.
values
Out
[
18
]
:
array
(
[
[
0.4691
,
-
0.2829
,
-
1.5091
,
-
1.1356
]
,
[
1.2121
,
-
0.1732
,
0.1192
,
-
1.0442
]
,
[
-
0.8618
,
-
2.1046
,
-
0.4949
,
1.0718
]
,
[
0.7216
,
-
0.7068
,
-
1.0396
,
0.2719
]
,
[
-
0.425
,
0.567
,
0.2762
,
-
1.0874
]
,
[
-
0.6737
,
0.1136
,
-
1.4784
,
0.525
]
]
)
|
描述显示数据快速统计摘要
1
2
3
4
5
6
7
8
9
10
11
|
In
[
19
]
:
df
.
describe
(
)
Out
[
19
]
:
A
B
C
D
count
6.000000
6.000000
6.000000
6.000000
mean
0.073711
-
0.431125
-
0.687758
-
0.233103
std
0.843157
0.922818
0.779887
0.973118
min
-
0.861849
-
2.104569
-
1.509059
-
1.135632
25
%
-
0.611510
-
0.600794
-
1.368714
-
1.076610
50
%
0.022070
-
0.228039
-
0.767252
-
0.386188
75
%
0.658444
0.041933
-
0.034326
0.461706
max
1.212112
0.567020
0.276232
1.071804
|
转置数据
1
2
3
4
5
6
7
|
In
[
20
]
:
df
.
T
Out
[
20
]
:
2013
-
01
-
01
2013
-
01
-
02
2013
-
01
-
03
2013
-
01
-
04
2013
-
01
-
05
2013
-
01
-
06
A
0.469112
1.212112
-
0.861849
0.721555
-
0.424972
-
0.673690
B
-
0.282863
-
0.173215
-
2.104569
-
0.706771
0.567020
0.113648
C
-
1.509059
0.119209
-
0.494929
-
1.039575
0.276232
-
1.478427
D
-
1.135632
-
1.044236
1.071804
0.271860
-
1.087401
0.524988
|
按轴排序
1
2
3
4
5
6
7
8
9
|
In
[
21
]
:
df
.
sort_index
(
axis
=
1
,
ascending
=
False
)
Out
[
21
]
:
D
C
B
A
2013
-
01
-
01
-
1.135632
-
1.509059
-
0.282863
0.469112
2013
-
01
-
02
-
1.044236
0.119209
-
0.173215
1.212112
2013
-
01
-
03
1.071804
-
0.494929
-
2.104569
-
0.861849
2013
-
01
-
04
0.271860
-
1.039575
-
0.706771
0.721555
2013
-
01
-
05
-
1.087401
0.276232
0.567020
-
0.424972
2013
-
01
-
06
0.524988
-
1.478427
0.113648
-
0.673690
|
按值排序
1
2
3
4
5
6
7
8
9
|
In
[
22
]
:
df
.
sort
(
columns
=
'B'
)
Out
[
22
]
:
A
B
C
D
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
0.271860
2013
-
01
-
01
0.469112
-
0.282863
-
1.509059
-
1.135632
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
2013
-
01
-
06
-
0.673690
0.113648
-
1.478427
0.524988
2013
-
01
-
05
-
0.424972
0.567020
0.276232
-
1.087401
|
注释: 标准Python / Numpy表达式可以完成这些互动工作, 但在生产代码中, 我们推荐使用优化的pandas数据访问方法, .at, .iat, .loc, .iloc 和 .ix.
参阅索引文档 索引和选择数据 and 多索引/高级索引
选择单列, 这会产生一个序列, 等价df.A
1
2
3
4
5
6
7
8
9
|
In
[
23
]
:
df
[
'A'
]
Out
[
23
]
:
2013
-
01
-
01
0.469112
2013
-
01
-
02
1.212112
2013
-
01
-
03
-
0.861849
2013
-
01
-
04
0.721555
2013
-
01
-
05
-
0.424972
2013
-
01
-
06
-
0.673690
Freq
:
D
,
Name
:
A
,
dtype
:
float64
|
使用[]选择行片断
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In
[
24
]
:
df
[
0
:
3
]
Out
[
24
]
:
A
B
C
D
2013
-
01
-
01
0.469112
-
0.282863
-
1.509059
-
1.135632
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
In
[
25
]
:
df
[
'20130102'
:
'20130104'
]
Out
[
25
]
:
A
B
C
D
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
0.271860
|
更多信息请参阅按标签选择
使用标签获取横截面
1
2
3
4
5
6
7
|
In
[
26
]
:
df
.
loc
[
dates
[
0
]
]
Out
[
26
]
:
A
0.469112
B
-
0.282863
C
-
1.509059
D
-
1.135632
Name
:
2013
-
01
-
01
00
:
00
:
00
,
dtype
:
float64
|
使用标签选择多轴
1
2
3
4
5
6
7
8
9
|
In
[
27
]
:
df
.
loc
[
:
,
[
'A'
,
'B'
]
]
Out
[
27
]
:
A
B
2013
-
01
-
01
0.469112
-
0.282863
2013
-
01
-
02
1.212112
-
0.173215
2013
-
01
-
03
-
0.861849
-
2.104569
2013
-
01
-
04
0.721555
-
0.706771
2013
-
01
-
05
-
0.424972
0.567020
2013
-
01
-
06
-
0.673690
0.113648
|
显示标签切片, 包含两个端点
1
2
3
4
5
6
|
In
[
28
]
:
df
.
loc
[
'20130102'
:
'20130104'
,
[
'A'
,
'B'
]
]
Out
[
28
]
:
A
B
2013
-
01
-
02
1.212112
-
0.173215
2013
-
01
-
03
-
0.861849
-
2.104569
2013
-
01
-
04
0.721555
-
0.706771
|
降低返回对象维度
1
2
3
4
5
|
In
[
29
]
:
df
.
loc
[
'20130102'
,
[
'A'
,
'B'
]
]
Out
[
29
]
:
A
1.212112
B
-
0.173215
Name
:
2013
-
01
-
02
00
:
00
:
00
,
dtype
:
float64
|
获取标量值
1
2
|
In
[
30
]
:
df
.
loc
[
dates
[
0
]
,
'A'
]
Out
[
30
]
:
0.46911229990718628
|
快速访问并获取标量数据 (等价上面的方法)
1
2
|
In
[
31
]
:
df
.
at
[
dates
[
0
]
,
'A'
]
Out
[
31
]
:
0.46911229990718628
|
更多信息请参阅按位置参阅
传递整数选择位置
1
2
3
4
5
6
7
|
In
[
32
]
:
df
.
iloc
[
3
]
Out
[
32
]
:
A
0.721555
B
-
0.706771
C
-
1.039575
D
0.271860
Name
:
2013
-
01
-
04
00
:
00
:
00
,
dtype
:
float64
|
使用整数片断,效果类似numpy/python
1
2
3
4
5
|
In
[
33
]
:
df
.
iloc
[
3
:
5
,
0
:
2
]
Out
[
33
]
:
A
B
2013
-
01
-
04
0.721555
-
0.706771
2013
-
01
-
05
-
0.424972
0.567020
|
使用整数偏移定位列表,效果类似 numpy/python 样式
1
2
3
4
5
6
|
In
[
34
]
:
df
.
iloc
[
[
1
,
2
,
4
]
,
[
0
,
2
]
]
Out
[
34
]
:
A
C
2013
-
01
-
02
1.212112
0.119209
2013
-
01
-
03
-
0.861849
-
0.494929
2013
-
01
-
05
-
0.424972
0.276232
|
显式行切片
1
2
3
4
5
|
In
[
35
]
:
df
.
iloc
[
1
:
3
,
:
]
Out
[
35
]
:
A
B
C
D
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
|
显式列切片
1
2
3
4
5
6
7
8
9
|
In
[
36
]
:
df
.
iloc
[
:
,
1
:
3
]
Out
[
36
]
:
B
C
2013
-
01
-
01
-
0.282863
-
1.509059
2013
-
01
-
02
-
0.173215
0.119209
2013
-
01
-
03
-
2.104569
-
0.494929
2013
-
01
-
04
-
0.706771
-
1.039575
2013
-
01
-
05
0.567020
0.276232
2013
-
01
-
06
0.113648
-
1.478427
|
显式获取一个值
1
2
|
In
[
37
]
:
df
.
iloc
[
1
,
1
]
Out
[
37
]
:
-
0.17321464905330861
|
快速访问一个标量(等同上个方法)
1
2
|
In
[
38
]
:
df
.
iat
[
1
,
1
]
Out
[
38
]
:
-
0.17321464905330861
|
使用单个列的值选择数据.
1
2
3
4
5
6
|
In
[
39
]
:
df
[
df
.
A
>
0
]
Out
[
39
]
:
A
B
C
D
2013
-
01
-
01
0.469112
-
0.282863
-
1.509059
-
1.135632
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
0.271860
|
where 操作.
1
2
3
4
5
6
7
8
9
|
In
[
40
]
:
df
[
df
>
0
]
Out
[
40
]
:
A
B
C
D
2013
-
01
-
01
0.469112
NaN
NaN
NaN
2013
-
01
-
02
1.212112
NaN
0.119209
NaN
2013
-
01
-
03
NaN
NaN
NaN
1.071804
2013
-
01
-
04
0.721555
NaN
NaN
0.271860
2013
-
01
-
05
NaN
0.567020
0.276232
NaN
2013
-
01
-
06
NaN
0.113648
NaN
0.524988
|
使用 isin() 筛选:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In
[
41
]
:
df2
=
df
.
copy
(
)
In
[
42
]
:
df2
[
'E'
]
=
[
'one'
,
'one'
,
'two'
,
'three'
,
'four'
,
'three'
]
In
[
43
]
:
df2
Out
[
43
]
:
A
B
C
D
E
2013
-
01
-
01
0.469112
-
0.282863
-
1.509059
-
1.135632
one
2013
-
01
-
02
1.212112
-
0.173215
0.119209
-
1.044236
one
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
two
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
0.271860
three
2013
-
01
-
05
-
0.424972
0.567020
0.276232
-
1.087401
four
2013
-
01
-
06
-
0.673690
0.113648
-
1.478427
0.524988
three
In
[
44
]
:
df2
[
df2
[
'E'
]
.
isin
(
[
'two'
,
'four'
]
)
]
Out
[
44
]
:
A
B
C
D
E
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
1.071804
two
2013
-
01
-
05
-
0.424972
0.567020
0.276232
-
1.087401
four
|
赋值一个新列,通过索引自动对齐数据
1
2
3
4
5
6
7
8
9
10
11
12
|
In
[
45
]
:
s1
=
pd
.
Series
(
[
1
,
2
,
3
,
4
,
5
,
6
]
,
index
=
pd
.
date_range
(
'20130102'
,
periods
=
6
)
)
In
[
46
]
:
s1
Out
[
46
]
:
2013
-
01
-
02
1
2013
-
01
-
03
2
2013
-
01
-
04
3
2013
-
01
-
05
4
2013
-
01
-
06
5
2013
-
01
-
07
6
Freq
:
D
,
dtype
:
int64
In
[
47
]
:
df
[
'F'
]
=
s1
|
按标签赋值
1
|
In
[
48
]
:
df
.
at
[
dates
[
0
]
,
'A'
]
=
0
|
按位置赋值
1
|
In
[
49
]
:
df
.
iat
[
0
,
1
]
=
0
|
通过numpy数组分配赋值
1
|
In
[
50
]
:
df
.
loc
[
:
,
'D'
]
=
np
.
array
(
[
5
]
*
len
(
df
)
)
|
之前的操作结果
1
2
3
4
5
6
7
8
9
|
In
[
51
]
:
df
Out
[
51
]
:
A
B
C
D
F
2013
-
01
-
01
0.000000
0.000000
-
1.509059
5
NaN
2013
-
01
-
02
1.212112
-
0.173215
0.119209
5
1
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
5
2
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
5
3
2013
-
01
-
05
-
0.424972
0.567020
0.276232
5
4
2013
-
01
-
06
-
0.673690
0.113648
-
1.478427
5
5
|
where 操作赋值.
1
2
3
4
5
6
7
8
9
10
11
|
In
[
52
]
:
df2
=
df
.
copy
(
)
In
[
53
]
:
df2
[
df2
>
0
]
=
-
df2
In
[
54
]
:
df2
Out
[
54
]
:
A
B
C
D
F
2013
-
01
-
01
0.000000
0.000000
-
1.509059
-
5
NaN
2013
-
01
-
02
-
1.212112
-
0.173215
-
0.119209
-
5
-
1
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
-
5
-
2
2013
-
01
-
04
-
0.721555
-
0.706771
-
1.039575
-
5
-
3
2013
-
01
-
05
-
0.424972
-
0.567020
-
0.276232
-
5
-
4
2013
-
01
-
06
-
0.673690
-
0.113648
-
1.478427
-
5
-
5
|
pandas主要使用np.nan替换丢失的数据. 默认情况下它并不包含在计算中. 请参阅 Missing Data section
重建索引允许更改/添加/删除指定轴索引,并返回数据副本.
1
2
3
4
5
6
7
8
9
|
In
[
55
]
:
df1
=
df
.
reindex
(
index
=
dates
[
0
:
4
]
,
columns
=
list
(
df
.
columns
)
+
[
'E'
]
)
In
[
56
]
:
df1
.
loc
[
dates
[
0
]
:
dates
[
1
]
,
'E'
]
=
1
In
[
57
]
:
df1
Out
[
57
]
:
A
B
C
D
F
E
2013
-
01
-
01
0.000000
0.000000
-
1.509059
5
NaN
1
2013
-
01
-
02
1.212112
-
0.173215
0.119209
5
1
1
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
5
2
NaN
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
5
3
NaN
|
删除任何有丢失数据的行.
1
2
3
4
|
In
[
58
]
:
df1
.
dropna
(
how
=
'any'
)
Out
[
58
]
:
A
B
C
D
F
E
2013
-
01
-
02
1.212112
-
0.173215
0.119209
5
1
1
|
填充丢失数据
1
2
3
4
5
6
7
|
In
[
59
]
:
df1
.
fillna
(
value
=
5
)
Out
[
59
]
:
A
B
C
D
F
E
2013
-
01
-
01
0.000000
0.000000
-
1.509059
5
5
1
2013
-
01
-
02
1.212112
-
0.173215
0.119209
5
1
1
2013
-
01
-
03
-
0.861849
-
2.104569
-
0.494929
5
2
5
2013
-
01
-
04
0.721555
-
0.706771
-
1.039575
5
3
5
|
获取值是否nan的布尔标记
1
2
3
4
5
6
7
|
In
[
60
]
:
pd
.
isnull
(
df1
)
Out
[
60
]
:
A
B
C
D
F
E
2013
-
01
-
01
False
False
False
False
True
False
2013
-
01
-
02
False
False
False
False
False
False
2013
-
01
-
03
False
False
False
False
False
True
2013
-
01
-
04
False
False
False
False
False
True
|
参阅二元运算基础
计算时一般不包括丢失的数据
执行描述性统计
1
2
3
4
5
6
7
8
|
In
[
61
]
:
df
.
mean
(
)
Out
[
61
]
:
A
-
0.004474
B
-
0.383981
C
-
0.687758
D
5.000000
F
3.000000
dtype
:
float64
|
在其他轴做相同的运算
1
2
3
4
5
6
7
8
9
|
In
[
62
]
:
df
.
mean
(
1
)
Out
[
62
]
:
2013
-
01
-
01
0.872735
2013
-
01
-
02
1.431621
2013
-
01
-
03
0.707731
2013
-
01
-
04
1.395042
2013
-
01
-
05
1.883656
2013
-
01
-
06
1.592306
Freq
:
D
,
dtype
:
float64
|
用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In
[
63
]
:
s
=
pd
.
Series
(
[
1
,
3
,
5
,
np
.
nan
,
6
,
8
]
,
index
=
dates
)
.
shift
(
2
)
In
[
64
]
:
s
Out
[
64
]
:
2013
-
01
-
01
NaN
2013
-
01
-
02
NaN
2013
-
01
-
03
1
2013
-
01
-
04
3
2013
-
01
-
05
5
2013
-
01
-
06
NaN
Freq
:
D
,
dtype
:
float64
In
[
65
]
:
df
.
sub
(
s
,
axis
=
'index'
)
Out
[
65
]
:
A
B
C
D
F
2013
-
01
-
01
NaN
NaN
NaN
NaN
NaN
2013
-
01
-
02
NaN
NaN
NaN
NaN
NaN
2013
-
01
-
03
-
1.861849
-
3.104569
-
1.494929
4
1
2013
-
01
-
04
-
2.278445
-
3.706771
-
4.039575
2
0
2013
-
01
-
05
-
5.424972
-
4.432980
-
4.723768
0
-
1
2013
-
01
-
06
NaN
NaN
NaN
NaN
NaN
|
在数据上使用函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In
[
66
]
:
df
.
apply
(
np
.
cumsum
)
Out
[
66
]
:
A
B
C
D
F
2013
-
01
-
01
0.000000
0.000000
-
1.509059
5
NaN
2013
-
01
-
02
1.212112
-
0.173215
-
1.389850
10
1
2013
-
01
-
03
0.350263
-
2.277784
-
1.884779
15
3
2013
-
01
-
04
1.071818
-
2.984555
-
2.924354
20
6
2013
-
01
-
05
0.646846
-
2.417535
-
2.648122
25
10
2013
-
01
-
06
-
0.026844
-
2.303886
-
4.126549
30
15
In
[
67
]
:
df
.
apply
(
lambda
x
:
x
.
max
(
)
-
x
.
min
(
)
)
Out
[
67
]
:
A
2.073961
B
2.671590
C
1.785291
D
0.000000
F
4.000000
dtype
:
float64
|
请参阅 直方图和离散化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
In
[
68
]
:
s
=
pd
.
Series
(
np
.
random
.
randint
(
0
,
7
,
size
=
10
)
)
In
[
69
]
:
s
Out
[
69
]
:
0
4
1
2
2
1
3
2
4
6
5
4
6
4
7
6
8
4
9
4
dtype
:
int32
In
[
70
]
:
s
.
value_counts
(
)
Out
[
70
]
:
4
5
6
2
2
2
1
1
dtype
:
int64
|
序列可以使用一些字符串处理方法很轻易操作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法默认情况下通常使用正则表达式(并且大多数时候都如此). 更多信息请参阅字符串向量方法.
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In
[
71
]
:
s
=
pd
.
Series
(
[
'A'
,
'B'
,
'C'
,
'Aaba'
,
'Baca'
,
np
.
nan
,
'CABA'
,
'dog'
,
'cat'
]
)
In
[
72
]
:
s
.
str
.
lower
(
)
Out
[
72
]
:
0
a
1
b
2
c
3
aaba
4
baca
5
NaN
6
caba
7
dog
8
cat
dtype
:
object
|
pandas提供各种工具以简便合并序列,数据桢,和组合对象, 在连接/合并类型操作中使用多种类型索引和相关数学函数.
请参阅合并部分
把pandas对象连接到一起
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
In
[
73
]
:
df
=
pd
.
DataFrame
(
np
.
random
.
randn
(
10
,
4
)
)
In
[
74
]
:
df
Out
[
74
]
:
0
1
2
3
0
-
0.548702
1.467327
-
1.015962
-
0.483075
1
1.637550
-
1.217659
-
0.291519
-
1.745505
2
-
0.263952
0.991460
-
0.919069
0.266046
3
-
0.709661
1.669052
1.037882
-
1.705775
4
-
0.919854
-
0.042379
1.247642
-
0.009920
5
0.290213
0.495767
0.362949
1.548106
6
-
1.131345
-
0.089329
0.337863
-
0.945867
7
-
0.932132
1.956030
0.017587
-
0.016692
8
-
0.575247
0.254161
-
1.143704
0.215897
9
1.193555
-
0.077118
-
0.408530
-
0.862495
# break it into pieces
In
[
75
]
:
pieces
=
[
df
[
:
3
]
,
df
[
3
:
7
]
,
df
[
7
:
]
]
In
[
76
]
:
pd
.
concat
(
pieces
)
Out
[
76
]
:
0
1
2
3
0
-
0.548702
1.467327
-
1.015962
-
0.483075
1
1.637550
-
1.217659
-
0.291519
-
1.745505
2
-
0.263952
0.991460
-
0.919069
0.266046
3
-
0.709661
1.669052
1.037882
-
1.705775
4
-
0.919854
-
0.042379
1.247642
-
0.009920
5
0.290213
0.495767
0.362949
1.548106
6
-
1.131345
-
0.089329
0.337863
-
0.945867
7
-
0.932132
1.956030
0.017587
-
0.016692
8
-
0.575247
0.254161
-
1.143704
0.215897
9
1.193555
-
0.077118
-
0.408530
-
0.862495
|
SQL样式合并. 请参阅 数据库style联接
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In
[
77
]
:
left
=
pd
.
DataFrame
(
{
'key'
:
[
'foo'
,
'foo'
]
,
'lval'
:
[
1
,
2
]
}
)
In
[
78
]
:
right
=
pd
.
DataFrame
(
{
'key'
:
[
'foo'
,
'foo'
]
,
'rval'
:
[
4
,
5
]
}
)
In
[
79
]
:
left
Out
[
79
]
:
key
lval
0
foo
1
1
foo
2
In
[
80
]
:
right
Out
[
80
]
:
key
rval
0
foo
4
1
foo
5
In
[
81
]
:
pd
.
merge
(
left
,
right
,
on
=
'key'
)
Out
[
81
]
:
key
lval
rval
0
foo
1
4
1
foo
1
5
2
foo
2
4
3
foo
2
5
|
添加行到数据增. 参阅 添加
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
In
[
82
]
:
df
=
pd
.
DataFrame
(
np
.
random
.
randn
(
8
,
4
)
,
columns
=
[
'A'
,
'B'
,
'C'
,
'D'
]
)
In
[
83
]
:
df
Out
[
83
]
:
A
B
C
D
0
1.346061
1.511763
1.627081
-
0.990582
1
-
0.441652
1.211526
0.268520
0.024580
2
-
1.577585
0.396823
-
0.105381
-
0.532532
3
1.453749
1.208843
-
0.080952
-
0.264610
4
-
0.727965
-
0.589346
0.339969
-
0.693205
5
-
0.339355
0.593616
0.884345
1.591431
6
0.141809
0.220390
0.435589
0.192451
7
-
0.096701
0.803351
1.715071
-
0.708758
In
[
84
]
:
s
=
df
.
iloc
[
3
]
In
[
85
]
:
df
.
append
(
s
,
ignore_index
=
True
)
Out
[
85
]
:
A
B
C
D
0
1.346061
1.511763
1.627081
-
0.990582
1
-
0.441652
1.211526
0.268520
0.024580
2
-
1.577585
0.396823
-
0.105381
-
0.532532
3
1.453749
1.208843
-
0.080952
-
0.264610
4
-
0.727965
-
0.589346
0.339969
-
0.693205
5
-
0.339355
0.593616
0.884345
1.591431
6
0.141809
0.220390
0.435589
0.192451
7
-
0.096701
0.803351
1.715071
-
0.708758
8
1.453749
1.208843
-
0.080952
-
0.264610
|
对于“group by”指的是以下一个或多个处理
请参阅 分组部分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
In
[
86
]
:
df
=
pd
.
DataFrame
(
{
'A'
:
[
'foo'
,
'bar'
,
'foo'
,
'bar'
,
.
.
.
.
:
'foo'
,
'bar'
,
'foo'
,
'foo'
]
,
.
.
.
.
:
'B'
:
[
'one'
,
'one'
,
'two'
,
'three'
,
.
.
.
.
:
'two'
,
'two'
,
'one'
,
'three'
]
,
.
.
.
.
:
'C'
:
np
.
random
.
randn
(
8
)
,
.
.
.
.
:
'D'
:
np
.
random
.
randn
(
8
)
}
)
.
.
.
.
:
In
[
87
]
:
df
Out
[
87
]
:
A
B
C
D
0
foo
one
-
1.202872
-
0.055224
1
bar
one
-
1.814470
2.395985
2
foo
two
1.018601
1.552825
3
bar
three
-
0.595447
0.166599
4
foo
two
1.395433
0.047609
5
bar
two
-
0.392670
-
0.136473
6
foo
one
0.007207
-
0.561757
7
foo
three
1.928123
-
1.623033
|
分组然后应用函数统计总和存放到结果组
1
2
3
4
5
6
|
In
[
88
]
:
df
.
groupby
(
'A'
)
.
sum
(
)
Out
[
88
]
:
C
D
A
bar
-
2.802588
2.42611
foo
3.146492
-
0.63958
|
按多列分组为层次索引,然后应用函数
1
2
3
4
5
6
7
8
9
10
|
In
[
89
]
:
df
.
groupby
(
[
'A'
,
'B'
]
)
.
sum
(
)
Out
[
89
]
:
C
D
A
B
bar
one
-
1.814470
2.395985
three
-
0.595447
0.166599
two
-
0.392670
-
0.136473
foo
one
-
1.195665
-
0.616981
three
1.928123
-
1.623033
two
2.414034
1.600434
|
请参阅章节 分层索引 和 重塑.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
In
[
90
]
:
tuples
=
list
(
zip
(
*
[
[
'bar'
,
'bar'
,
'baz'
,
'baz'
,
.
.
.
.
:
'foo'
,
'foo'
,
'qux'
,
'qux'
]
,
.
.
.
.
:
[
'one'
,
'two'
,
'one'
,
'two'
,
.
.
.
.
:
'one'
,
'two'
,
'one'
,
'two'
]
]
)
)
.
.
.
.
:
In
[
91
]
:
index
=
pd
.
MultiIndex
.
from_tuples
(
tuples
,
names
=
[
'first'
,
'second'
]
)
In
[
92
]
:
df
=
pd
.
DataFrame
(
np
.
random
.
randn
(
8
,
2
)
,
index
=
index
,
columns
=
[
'A'
,
'B'
]
)
In
[
93
]
:
df2
=
df
[
:
4
]
In
[
94
]
:
df2
Out
[
94
]
:
A
B
first
second
bar
one
0.029399
-
0.542108
two
0.282696
-
0.087302
baz
one
-
1.575170
1.771208
two
0.816482
1.100230
|
堆叠 函数 “压缩” 数据桢的列一个级别.
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In
[
95
]
:
stacked
=
df2
.
stack
(
)
In
[
96
]
:
stacked
Out
[
96
]
:
first
second
bar
one
A
0.029399
B
-
0.542108
two
A
0.282696
B
-
0.087302
baz
one
A
-
1.575170
B
1.771208
two
A
0.816482
B
1.100230
dtype
:
float64
|
被“堆叠”数据桢或序列(有多个索引作为索引), 其堆叠的反向操作是未堆栈, 上面的数据默认反堆叠到上一级别:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
In
[
97
]
:
stacked
.
unstack
(
)
Out
[
97
]
:
A
B
first
second
bar
one
0.029399
-
0.542108
two
0.282696
-
0.087302
baz
one
-
1.575170
1.771208
two
0.816482
1.100230
In
[
98
]
:
stacked
.
unstack
(
1
)
Out
[
98
]
:
second
one
two
first
bar
A
0.029399
0.282696
B
-
0.542108
-
0.087302
baz
A
-
1.575170
0.816482
B
1.771208
1.100230
In
[
99
]
:
stacked
.
unstack
(
0
)
Out
[
99
]
:
first
bar
baz
second
one
A
0.029399
-
1.575170
B
-
0.542108
1.771208
two
A
0.282696
0.816482
B
-
0.087302
1.100230
|
查看数据透视表.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
In
[
100
]
:
df
=
pd
.
DataFrame
(
{
'A'
:
[
'one'
,
'one'
,
'two'
,
'three'
]
*
3
,
.
.
.
.
.
:
'B'
:
[
'A'
,
'B'
,
'C'
]
*
4
,
.
.
.
.
.
:
'C'
:
[
'foo'
,
'foo'
,
'foo'
,
'bar'
,
'bar'
,
'bar'
]
*
2
,
.
.
.
.
.
:
'D'
:
np
.
random
.
randn
(
12
)
,
.
.
.
.
.
:
'E'
:
np
.
random
.
randn
(
12
)
}
)
.
.
.
.
.
:
In
[
101
]
:
df
Out
[
101
]
:
A
B
C
D
E
0
one
A
foo
1.418757
-
0.179666
1
one
B
foo
-
1.879024
1.291836
2
two
C
foo
0.536826
-
0.009614
3
three
A
bar
1.006160
0.392149
4
one
B
bar
-
0.029716
0.264599
5
one
C
bar
-
1.146178
-
0.057409
6
two
A
foo
0.100900
-
1.425638
7
three
B
foo
-
1.035018
1.024098
8
one
C
foo
0.314665
-
0.106062
9
one
A
bar
-
0.773723
1.824375
10
two
B
bar
-
1.170653
0.595974
11
three
C
bar
0.648740
1.167115
|
我们可以从此数据非常容易的产生数据透视表:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
In
[
102
]
:
pd
.
pivot_table
(
df
,
values
=
'D'
,
index
=
[
'A'
,
'B'
]
,
columns
=
[
'C'
]
)
Out
[
102
]
:
C
bar
foo
A
B
one
A
-
0.773723
1.418757
B
-
0.029716
-
1.879024
C
-
1.146178
0.314665
three
A
1.006160
NaN
B
NaN
-
1.035018
C
0.648740
NaN
two
A
NaN
0.100900
B
-
1.170653
NaN
C
NaN
0.536826
|
pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅时间序列章节
1
2
3
4
5
6
|
In
[
103
]
:
rng
=
pd
.
date_range
(
'1/1/2012'
,
periods
=
100
,
freq
=
'S'
)
In
[
104
]
:
ts
=
pd
.
Series
(
np
.
random
.
randint
(
0
,
500
,
len
(
rng
)
)
,
index
=
rng
)
In
[
105
]
:
ts
.
resample
(
'5Min'
,
how
=
'sum'
)
Out
[
105
]
:
2012
-
01
-
01
25083
Freq
:
5T
,
dtype
:
int32
|
时区表示
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In
[
106
]
:
rng
=
pd
.
date_range
(
'3/6/2012 00:00'
,
periods
=
5
,
freq
=
'D'
)
In
[
107
]
:
ts
=
pd
.
Series
(
np
.
random
.
randn
(
len
(
rng
)
)
,
rng
)
In
[
108
]
:
ts
Out
[
108
]
:
2012
-
03
-
06
0.464000
2012
-
03
-
07
0.227371
2012
-
03
-
08
-
0.496922
2012
-
03
-
09
0.306389
2012
-
03
-
10
-
2.290613
Freq
:
D
,
dtype
:
float64
In
[
109
]
:
ts_utc
=
ts
.
tz_localize
(
'UTC'
)
In
[
110
]
:
ts_utc
Out
[
110
]
:
2012
-
03
-
06
00
:
00
:
00
+
00
:
00
0.464000
2012
-
03
-
07
00
:
00
:
00
+
00
:
00
0.227371
2012
-
03
-
08
00
:
00
:
00
+
00
:
00
-
0.496922
2012
-
03
-
09
00
:
00
:
00
+
00
:
00
0.306389
2012
-
03
-
10
00
:
00
:
00
+
00
:
00
-
2.290613
Freq
:
D
,
dtype
:
float64
|
转换到其它时区
1
2
3
4
5
6
7
8
|
In
[
111
]
:
ts_utc
.
tz_convert
(
'US/Eastern'
)
Out
[
111
]
:
2012
-
03
-
05
19
:
00
:
00
-
05
:
00
0.464000
2012
-
03
-
06
19
:
00
:
00
-
05
:
00
0.227371
2012
-
03
-
07
19
:
00
:
00
-
05
:
00
-
0.496922
2012
-
03
-
08
19
:
00
:
00
-
05
:
00
0.306389
2012
-
03
-
09
19
:
00
:
00
-
05
:
00
-
2.290613
Freq
:
D
,
dtype
:
float64
|
转换不同的时间跨度
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
In
[
112
]
:
rng
=
pd
.
date_range
(
'1/1/2012'
,
periods
=
5
,
freq
=
'M'
)
In
[
113
]
:
ts
=
pd
.
Series
(
np
.
random
.
randn
(
len
(
rng
)
)
,
index
=
rng
)
In
[
114
]
:
ts
Out
[
114
]
:
2012
-
01
-
31
-
1.134623
2012
-
02
-
29
-
1.561819
2012
-
03
-
31
-
0.260838
2012
-
04
-
30
0.281957
2012
-
05
-
31
1.523962
Freq
:
M
,
dtype
:
float64
In
[
115
]
:
ps
=
ts
.
to_period
(
)
In
[
116
]
:
ps
Out
[
116
]
:
2012
-
01
-
1.134623
2012
-
02
-
1.561819
2012
-
03
-
0.260838
2012
-
04
0.281957
2012
-
05
1.523962
Freq
:
M
,
dtype
:
float64
In
[
117
]
:
ps
.
to_timestamp
(
)
Out
[
117
]
:
2012
-
01
-
01
-
1.134623
2012
-
02
-
01
-
1.561819
2012
-
03
-
01
-
0.260838
2012
-
04
-
01
0.281957
2012
-
05
-
01
1.523962
Freq
:
MS
,
dtype
:
float64
|
转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据
1
2
3
4
5
6
7
8
9
10
11
|
In
[
118
]
:
prng
=
pd
.
period_range
(
'1990Q1'
,
'2000Q4'
,
freq
=
'Q-NOV'
)
In
[
119
]
:
ts
=
pd
.
Series
(
np
.
random
.
randn
(
len
(
prng
)
)
,
prng
)
In
[
120
]
:
ts
.
index
=
(
prng
.
asfreq
(
'M'
,
'e'
)
+
1
)
.
asfreq
(
'H'
,
's'
)
+
9
In
[
121
]
:
ts
.
head
(
)
Out
[
121
]
:
1990
-
03
-
01
09
:
00
-
0.902937
1990
-
06
-
01
09
:
00
0.068159
1990
-
09
-
01
09
:
00
-
0.057873
1990
-
12
-
01
09
:
00
-
0.368204
1991
-
03
-
01
09
:
00
-
1.144073
Freq
:
H
,
dtype
:
float64
|
自版本0.15起, pandas可以在数据桢中包含分类. 完整的文档, 请查看分类介绍 and the API文档.
1
|
In
[
122
]
:
df
=
pd
.
DataFrame
(
{
"id"
:
[
1
,
2
,
3
,
4
,
5
,
6
]
,
"raw_grade"
:
[
'a'
,
'b'
,
'b'
,
'a'
,
'a'
,
'e'
]
}
)
|
转换原始类别为分类数据类型.
1
2
3
4
5
6
7
8
9
10
11
|
In
[
123
]
:
df
[
"grade"
]
=
df
[
"raw_grade"
]
.
astype
(
"category"
)
In
[
124
]
:
df
[
"grade"
]
Out
[
124
]
:
0
a
1
b
2
b
3
a
4
a
5
e
Name
:
grade
,
dtype
:
category
Categories
(
3
,
object
)
:
[
a
,
b
,
e
]
|
重命令分类为更有意义的名称 (分配到Series.cat.categories对应位置!)
1
|
In
[
125
]
:
df
[
"grade"
]
.
cat
.
categories
=
[
"very good"
,
"good"
,
"very bad"
]
|
重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新默认序列)
1
2
3
4
5
6
7
8
9
10
11
|
In
[
126
]
:
df
[
"grade"
]
=
df
[
"grade"
]
.
cat
.
set_categories
(
[
"very bad"
,
"bad"
,
"medium"
,
"good"
,
"very good"
]
)
In
[
127
]
:
df
[
"grade"
]
Out
[
127
]
:
0
very
good
1
good
2
good
3
very
good
4
very
good
5
very
bad
Name
:
grade
,
dtype
:
category
Categories
(
5
,
object
)
:
[
very
bad
,
bad
,
medium
,
good
,
very
good
]
|
排列分类中的顺序,不是按词汇排列.
1
2
3
4
5
6
7
8
9
|
In
[
128
]
:
df
.
sort
(
"grade"
)
Out
[
128
]
:
id
raw_grade
grade
5
6
e
very
bad
1
2
b
good
2
3
b
good
0
1
a
very
good
3
4
a
very
good
4
5
a
very
good
|
类别列分组,并且也显示空类别.
1
2
3
4
5
6
7
8
9
|
In
[
129
]
:
df
.
groupby
(
"grade"
)
.
size
(
)
Out
[
129
]
:
grade
very
bad
1
bad
NaN
medium
NaN
good
2
very
good
3
dtype
:
float64
|
绘图文档.
1
2
3
4
|
In
[
130
]
:
ts
=
pd
.
Series
(
np
.
random
.
randn
(
1000
)
,
index
=
pd
.
date_range
(
'1/1/2000'
,
periods
=
1000
)
)
In
[
131
]
:
ts
=
ts
.
cumsum
(
)
In
[
132
]
:
ts
.
plot
(
)
Out
[
132
]
:
<
matplotlib
.
axes
.
_subplots
.
AxesSubplot
at
0xb02091ac
>
|
在数据桢中,可以很方便的绘制带标签列:
1
2
3
4
5
6
|
In
[
133
]
:
df
=
pd
.
DataFrame
(
np
.
random
.
randn
(
1000
,
4
)
,
index
=
ts
.
index
,
.
.
.
.
.
:
columns
=
[
'A'
,
'B'
,
'C'
,
'D'
]
)
.
.
.
.
.
:
In
[
134
]
:
df
=
df
.
cumsum
(
)
In
[
135
]
:
plt
.
figure
(
)
;
df
.
plot
(
)
;
plt
.
legend
(
loc
=
'best'
)
Out
[
135
]
:
<
matplotlib
.
legend
.
Legend
at
0xb01c9cac
>
|
写入csv文件
1
|
In
[
136
]
:
df
.
to_csv
(
'foo.csv'
)
|
读取csv文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In
[
137
]
:
pd
.
read_csv
(
'foo.csv'
)
Out
[
137
]
:
Unnamed
:
0
A
B
C
D
0
2000
-
01
-
01
0.266457
-
0.399641
-
0.219582
1.186860
1
2000
-
01
-
02
-
1.170732
-
0.345873
1.653061
-
0.282953
2
2000
-
01
-
03
-
1.734933
0.530468
2.060811
-
0.515536
3
2000
-
01
-
04
-
1.555121
1.452620
0.239859
-
1.156896
4
2000
-
01
-
05
0.578117
0.511371
0.103552
-
2.428202
5
2000
-
01
-
06
0.478344
0.449933
-
0.741620
-
1.962409
6
2000
-
01
-
07
1.235339
-
0.091757
-
1.543861
-
1.084753
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
993
2002
-
09
-
20
-
10.628548
-
9.153563
-
7.883146
28.313940
994
2002
-
09
-
21
-
10.390377
-
8.727491
-
6.399645
30.914107
995
2002
-
09
-
22
-
8.985362
-
8.485624
-
4.669462
31.367740
996
2002
-
09
-
23
-
9.558560
-
8.781216
-
4.499815
30.518439
997
2002
-
09
-
24
-
9.902058
-
9.340490
-
4.386639
30.105593
998
2002
-
09
-
25
-
10.216020
-
9.480682
-
3.933802
29.758560
999
2002
-
09
-
26
-
11.856774
-
10.671012
-
3.216025
29.369368
[
1000
rows
x
5
columns
]
|
读写HDF存储
写入HDF5存储
1
|
In
[
138
]
:
df
.
to_hdf
(
'foo.h5'
,
'df'
)
|
读取HDF5存储
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In
[
139
]
:
pd
.
read_hdf
(
'foo.h5'
,
'df'
)
Out
[
139
]
:
A
B
C
D
2000
-
01
-
01
0.266457
-
0.399641
-
0.219582
1.186860
2000
-
01
-
02
-
1.170732
-
0.345873
1.653061
-
0.282953
2000
-
01
-
03
-
1.734933
0.530468
2.060811
-
0.515536
2000
-
01
-
04
-
1.555121
1.452620
0.239859
-
1.156896
2000
-
01
-
05
0.578117
0.511371
0.103552
-
2.428202
2000
-
01
-
06
0.478344
0.449933
-
0.741620
-
1.962409
2000
-
01
-
07
1.235339
-
0.091757
-
1.543861
-
1.084753
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2002
-
09
-
20
-
10.628548
-
9.153563
-
7.883146
28.313940
2002
-
09
-
21
-
10.390377
-
8.727491
-
6.399645
30.914107
2002
-
09
-
22
-
8.985362
-
8.485624
-
4.669462
31.367740
2002
-
09
-
23
-
9.558560
-
8.781216
-
4.499815
30.518439
2002
-
09
-
24
-
9.902058
-
9.340490
-
4.386639
30.105593
2002
-
09
-
25
-
10.216020
-
9.480682
-
3.933802
29.758560
2002
-
09
-
26
-
11.856774
-
10.671012
-
3.216025
29.369368
[
1000
rows
x
4
columns
]
|
读写MS Excel
写入excel文件
1
|
In
[
140
]
:
df
.
to_excel
(
'foo.xlsx'
,
sheet_name
=
'Sheet1'
)
|
读取excel文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
In
[
141
]
:
pd
.
read_excel
(
'foo.xlsx'
,
'Sheet1'
,
index_col
=
None
,
na_values
=
[
'NA'
]
)
Out
[
141
]
:
A
B
C
D
2000
-
01
-
01
0.266457
-
0.399641
-
0.219582
1.186860
2000
-
01
-
02
-
1.170732
-
0.345873
1.653061
-
0.282953
2000
-
01
-
03
-
1.734933
0.530468
2.060811
-
0.515536
2000
-
01
-
04
-
1.555121
1.452620
0.239859
-
1.156896
2000
-
01
-
05
0.578117
0.511371
0.103552
-
2.428202
2000
-
01
-
06
0.478344
0.449933
-
0.741620
-
1.962409
2000
-
01
-
07
1.235339
-
0.091757
-
1.543861
-
1.084753
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2002
-
09
-
20
-
10.628548
-
9.153563
-
7.883146
28.313940
2002
-
09
-
21
-
10.390377
-
8.727491
-
6.399645
30.914107
2002
-
09
-
22
-
8.985362
-
8.485624
-
4.669462
31.367740
2002
-
09
-
23
-
9.558560
-
8.781216
-
4.499815
30.518439
2002
-
09
-
24
-
9.902058
-
9.340490
-
4.386639
30.105593
2002
-
09
-
25
-
10.216020
-
9.480682
-
3.933802
29.758560
2002
-
09
-
26
-
11.856774
-
10.671012
-
3.216025
29.369368
[
1000
rows
x
4
columns
]
|
如果尝试这样操作可能会看到像这样的异常:
1
2
3
4
5
|
>>>
if
pd
.
Series
(
[
False
,
True
,
False
]
)
:
print
(
"I was true"
)
Traceback
.
.
.
ValueError
:
The
truth
value
of
an
array
is
ambiguous
.
Use
a
.
empty
,
a
.
any
(
)
or
a
.
all
(
)
.
|
查看对照获取解释和怎么做的帮助
也可以查看陷阱.