算法小白的第一次尝试---多元线性回归

import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.types.{DoubleType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import breeze.linalg._
/**
  * @author XiaoTangBao
  * @date 2019/3/20 19:10
  * @version 1.0
  */
object LR4 {
  def main(args: Array[String]): Unit = {
    //屏蔽日志
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
    val sparkSession = SparkSession.builder().master("local[4]").appName("LR").getOrCreate()
    //获取数据源
    val data = sparkSession.sparkContext.textFile("G:\\mldata\\airfoil_self_noise.txt").map(line => line.split('|'))
    //随机切分成训练集和测试集
    val splitData = data.randomSplit(Array(0.7,0.3))
    val trainData = splitData(0) .map(arr => Row(arr(5).toDouble,arr(0).toDouble,arr(1).toDouble,arr(2).toDouble,arr(3).toDouble,arr(4).toDouble))
    val testDataLabel = splitData(1).map(arr => arr(5).toDouble).collect()
    val testData = splitData(1).map(arr => arr.dropRight(1).map(_.toDouble)).collect()
    //定义schema 和featuresArr
    val schema = StructType(List(StructField("label",DoubleType,true),StructField("Frequency",DoubleType,true)
      ,StructField("Angle",DoubleType,true),StructField("Chord",DoubleType,true)
      ,StructField("velocity",DoubleType,true),StructField("thickness",DoubleType,true)))
    val featuresArr = Array("Frequency","Angle","Chord","velocity","thickness")
    val traindf = sparkSession.createDataFrame(trainData,schema)
    //转换器
    val vectorAssemb  = new VectorAssembler().setInputCols(featuresArr).setOutputCol("features")
    //模型训练所需格式的DF
    val trainDF = vectorAssemb.transform(traindf).select("label","features")
    //训练模型
    val theaMatrix:DenseMatrix[Double] = LR(trainDF)
    //测试数据
    var testMatrix = DenseMatrix.zeros[Double](testData.length,featuresArr.length+1)
    testMatrix(::,0) := 1.0
    for(i<-0 until testData.length){
      for(j<-0 until featuresArr.length){
        testMatrix(i,j+1) = testData(i)(j)
      }
    }
    //拟合结果
    val resultMatrix = testMatrix * theaMatrix
    //均方差
    val k = (resultMatrix.toArray zip testDataLabel).map{case(predict,value)=>math.pow((predict-value),2)}
    var sum = 0.0
    for(i<-k) sum += i
    val rmse = math.sqrt(sum / testData.length)
    println(“rmse =+ rmse)
  }

  /**
    * LR Multiple linear regression
    * @param df  input dataFrame(label,features)
    * @return Matrix of thea
    */
  def LR(df:DataFrame)={
    val label = df.rdd.map(row => row.getDouble(row.fieldIndex("label"))).collect()
    val trainData = df.select("features").rdd.map(row => row.toString())
      .map(str => str.replace('[',' '))
      .map(str => str.replace(']',' '))
      .map(str => str.trim()).map(str => str.split(','))
      .map(arr => arr.map(str => str.toDouble))
      .collect()
    //特征维度
    val dimensions = trainData(0).length
    //系数矩阵行
    val matrixRows = trainData.length
    //系数矩阵列
    val matrixColumns = dimensions + 1
    //定义系数矩阵
    var matrix = DenseMatrix.zeros[Double](matrixRows,matrixColumns)
    matrix(::,0) := 1.0
    for(i<-0 until matrixRows){
      for(j<-0 until dimensions){
        matrix(i,j+1) = trainData(i)(j)
      }
    }
    //定义label矩阵
    var labelMatrix = DenseMatrix.zeros[Double](matrixRows,1)
    for(i<-0 until matrixRows) labelMatrix(i,0) = label(i)
    //求解thea矩阵
    val thea = (inv(((matrix.t) * matrix))) * (matrix.t) * labelMatrix
    thea
  }
}

-------------------------result--------------------------------------------------------------------------------------------------------------------
rmse = 5.003040917178264

算法小白的第一次尝试---多元线性回归_第1张图片

你可能感兴趣的:(机器学习,算法,Spark,小白的算法之路)