Array in the Pocket
Time Limit: 2 Seconds Memory Limit: 65536 KB
BaoBao has just found an array of integers in his left pocket. As BaoBao is bored, he decides to rearrange it into another array of integers such that is a permutation of , and for all . Please help BaoBao finish the rearragement.
If multiple valid rearrangements exist, find the smallest one among them.
Consider two arrays and , we say is smaller than if there exists an integer such that , for all , and .
Input
There are multiple test cases. The first line of the input contains an integer , indicating the number of test cases. For each test case:
The first line contains an integer (), indicating the length of the array.
The second line contains integers (), indicating the given array.
Output
For each test case output one line containing integers separated by a space, indicating the answer. If there are multiple valid answers, output the smallest one. If no valid answer exists, print "Impossible" (without quotes) instead.
Please, DO NOT output extra spaces at the end of each line, or your answer may be considered incorrect!
Sample Input
3
4
4 1 3 2
4
1 1 2 3
3
1 1 1
Sample Output
1 2 4 3
2 3 1 1
Impossible
题意:
给你一个包含n(n<=1e5)个数(1<=每个数<=n)的序列,让你重新排列这个序列,使得重新排列后每个位置上的数和原来的不一样,并且字典序最小。
思路:
考虑贪心。
假设当前还有z个数要填,你手里数i的剩余数量为c[i],剩下的位置中有sum[i]个位置不能填i。
那么当max{c[i]+sum[i]}>z时,便无解。
当max{c[i]+sum[i]}==z时,这个位置必须填i,否则找一个字典序最小的和a[i]不相等的填上即可。
因此我们用一个set1维护(c[i]+sum[i],i),一个set2维护(i,c[i]),便可以构造出解。
对于每个数i,我们先把a[i]对应的set1中(c[a[i]],a[i])进行更新,然后判断(--set1.end())->first是否==n-i+1,如果是则填i,不是就从set2中找一个最小的不等于a[i]的填上,然后再更新你填的这个数对应的set1、set2中的值。
如果刚开始就((--set1.end())->first)>n 那么肯定就是Impossible了。
代码:
#include
#define ll long long
#define inf 0x3f3f3f3f
#define rep(i,a,b) for(register int i=(a);i<=(b);i++)
#define dep(i,a,b) for(register int i=(a);i>=(b);i--)
using namespace std;
const int maxn=100010;
int n,m,k;
int a[maxn],c[maxn],sum[maxn];
int b[maxn],ok[maxn];
set >st1,st2;
set >::iterator it1,it2;
int main()
{
int T,cas=1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
memset(c,0,sizeof(c));
memset(sum,0,sizeof(sum));
rep(i,1,n)
{
scanf("%d",&a[i]);
c[a[i]]++;
sum[a[i]]+=2;
}
st1.clear();st2.clear();
rep(i,1,n)
if(c[i]){
st1.insert(make_pair(sum[i],i));
st2.insert(make_pair(i,c[i]));
}
it1=st1.end();it1--;
if((*it1).first>n)
{
puts("Impossible");
continue;
}
rep(i,1,n)
{
st1.erase(make_pair(sum[a[i]],a[i]));
st1.insert(make_pair(--sum[a[i]],a[i]));
pairx=*(--st1.end());
if(n-i+1==x.first)
{
b[i]=x.second;
}
else
{
if(a[i]==(st2.begin())->first)
b[i]=(++st2.begin())->first;
else b[i]=(st2.begin())->first;
}
st2.erase(make_pair(b[i],c[b[i]]));
if(--c[b[i]]>0) st2.insert(make_pair(b[i],c[b[i]]));
st1.erase(make_pair(sum[b[i]],b[i]));
if(--sum[b[i]]>0) st1.insert(make_pair(sum[b[i]],b[i]));
}
rep(i,1,n)
{
printf("%d%c",b[i],i==n?'\n':' ');
}
}
return 0;
}
/*
3
4
4 1 3 2
4
1 1 2 3
3
1 1 1
*/