A的第一道可持续化线段树。
我是看这个看懂的http://hi.baidu.com/wyl8899/item/e00796a9cb2df73d020a4d68
可持续化线段树,主要思想就是利用历史信息,减少时间和内存花销。
比方有两棵线段树,但是他们只有一个节点信息不同。仔细一想,在这两颗线段树上,对应的 [l,r]节点 只有log(n)个节点不同。那么,除了不同的节点,其他节点信息,他们完全可以共用。
关于这题解法,我就复制别人的话了( 好懒啊 o(╯□╰)o )
考虑把权值离散化,然后用线段树解决问题。
对于一个询问(x,y,k),如果已经把a[x]..a[y]建成了一颗线段树,并维护区间和,显然二分就可以了。
(怎么二分? ...看左儿子有没有k个然后递归 自己YY一下就出来了)
但是很遗憾我们没办法这么搞...这还不如裸奔...
接下来思考一个问题。
记T[x,y]为a[x]..a[y]建成的线段树,那么T[x,y]和T[1,x-1],T[1,y]有什么关系?
对于T[x,y]中的一个节点[L,R],我们一定可以在T[1,x-1]和T[1,y]中找到也代表[L,R]的对应节点。
考察这三个节点存储的区间和的关系,马上可以发现:
T[x,y]中任意节点[L,R]的区间和等于T[1,y]中对应节点的区间和减去T[1,x-1]中对应节点的区间和。
这就好办多了,我们只需要把所有的T[1,x](1<=x<=N)建出来了就可以了。
......
发现什么问题没有? 空间和时间都不允许你建N棵线段树的。
函数式数据结构的思想这时候派上用场了。
考察T[1,x]和T[1,x-1]——在T[1,x-1]加入a[x]就得到T[1,x]了。
单点修改的时候要改变信息的节点的数量是O(logn)。
于是我们"大胆地重用以前的信息",只新建这些节点,然后这些节点的左右儿子可以指向前一棵树的节点。
最终的总节点个数是O(nlogn),预处理复杂度O(nlogn),回答每个询问O(logn),常数还是有一点的。
//#pragma comment(linker, "/STACK:102400000,102400000")
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include