PyTorch1.0搭建卷积神经网络实现MNIST手写数字识别

还是把所有代码放在三个.py文件里:

  • net.py用来定义卷积网络
  • readpic.py用来读取自己手动画的一张图片,测试着玩
  • CNN.py就是代码的主体部分

net.py

这里使用的是LeNet,LeNet是整个神经网络的开山之作,1998年由LeCun提出,它的结构特别简单。

PyTorch1.0搭建卷积神经网络实现MNIST手写数字识别_第1张图片

import torch
import torch.nn as nn

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 6, 3, padding=1),    # 6@28*28
            nn.MaxPool2d(2, 2)                # 6@14*14
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(6, 16, 5),              # 16@10*10
            nn.MaxPool2d(2, 2)                # 16@5*5
        )
        self.layer3 = nn.Sequential(
            nn.Linear(400, 120),              # 16*5*5=400
            nn.Linear(120, 84),
            nn.Linear(84, 10)
        )

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = x.view(x.size(0), -1)
        x = self.layer3(x)
        return x

readpic.py

实现对图片的读取和show

from PIL import Image
import matplotlib.pyplot as plt
from torchvision import datasets, transforms


def readImage(path='./3.jpg', size=28):
    mode = Image.open(path).convert('L')  # 转换成灰度图
    transform1 = transforms.Compose([
        transforms.Resize(size),
        transforms.CenterCrop((size, size)),  # 切割
        transforms.ToTensor()
    ])
    mode = transform1(mode)
    return mode


def showTorchImage(image):
    mode = transforms.ToPILImage()(image)
    plt.imshow(mode)
    plt.show()

CNN.py

import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import net  # 自定义的网络模块
import readpic  # 读自己手写的图片


# hyperparameters
batch_size = 128
learning_rate = 1e-2
num_epoches = 5

# 标准化
data_tf = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize([0.5], [0.5])]
)

train_dataset = datasets.MNIST(root='./data', train=True, transform=data_tf, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_tf)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

model = net.LeNet()
if torch.cuda.is_available():
    model = model.cuda()


# 定义loss函数和优化方法
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

for epoch in range(num_epoches):
    model.train()
    for data in train_loader:   # 每次取一个batch_size张图片
        img, label = data   # img.size:128*1*28*28
        # img = img.view(img.size(0), -1)  # 展开成128 *784(28*28)
        if torch.cuda.is_available():
            img = img.cuda()
            label = label.cuda()
        output = model(img)
        loss = loss_fn(output, label)
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # print('epoch:', epoch, '|loss:', loss.item())
    # 在测试集上检验效果
    model.eval()  # 将模型改为测试模式
    eval_loss = 0
    eval_acc = 0
    for data in test_loader:
        img, label = data
        if torch.cuda.is_available():
            img = img.cuda()
            label = label.cuda()
        out = model(img)
        loss = loss_fn(out, label)
        # print(label.size(0))
        eval_loss += loss.item() * label.size(0)   # lable.size(0)=128
        _, pred = torch.max(out, 1)
        num_correct = (pred == label).sum()
        eval_acc += num_correct.item()
    print('Epoch:{}, Test loss:{:.6f}, Acc:{:.6f}'.format(epoch, eval_loss/(len(test_dataset)), eval_acc/(len(test_dataset))))

网络训练之后,下面是我用画图写了一个数字,把这个图片放在相同目录下,然后识别看看效果:

PyTorch1.0搭建卷积神经网络实现MNIST手写数字识别_第2张图片

figure = readpic.readImage(path='./3.png', size=28)   # figure dim=[1, 28, 28] 
figure = figure.unsqueeze(0)   # figure dim = [1, 1, 28, 28]
figure = figure.cuda()
y_pred = model(figure)
_, pred = torch.max(y_pred, 1)
print('prediction = ', pred.item())

PyTorch1.0搭建卷积神经网络实现MNIST手写数字识别_第3张图片

训练了5次,识别效果还可以。源码还是放在GitHub

 

遇到的问题:

PyTorch1.0搭建卷积神经网络实现MNIST手写数字识别_第4张图片

读取图片是3维的[1,28,28],但是CNN应该输入4维,所以应该插入一维。

figure = figure.unsqueeze(0)   # figure dim = [1, 1, 28, 28]

[1, 1, 28, 28]:一张图片,一个通道,长宽是28*28

你可能感兴趣的:(深度学习入门)