牛顿流体耗散方程【Dissipation Function】

牛顿流体耗散方程

Dissipation Function for Newtonian Fluids


1.直角坐标系( x,y,z x , y , z )

直角坐标系Cartesian coordinates (  x,y,z   x,y,z  ): NO.
ΦΦv=2[(vxx)2+(vyy)2+(vzz)2]+[vyx+vxy]2+[vzy+vyz]2+[vxz+vzx]223[vxx+vyy++vzz]2 Φ Φ v = 2 [ ( ∂ v x ∂ x ) 2 + ( ∂ v y ∂ y ) 2 + ( ∂ v z ∂ z ) 2 ] + [ ∂ v y ∂ x + ∂ v x ∂ y ] 2 + [ ∂ v z ∂ y + ∂ v y ∂ z ] 2 + [ ∂ v x ∂ z + ∂ v z ∂ x ] 2 − 2 3 [ ∂ v x ∂ x + ∂ v y ∂ y + + ∂ v z ∂ z ] 2 1-1

2.圆柱坐标系( r,θ,z r , θ , z )

圆柱坐标系Cylindrical coordinates coordinates ( r, θ, z  r,  θ , z  ): NO.
ΦΦv=2[(vrr)2+(1rvθθ+vrr)2+(vzz)2]+[rr(vθr)+1rvrθ]2+[1rvzθ+vθz]2+[vrz+vzr]223[1rr(rvr)+1rvθθ+vzz]2 Φ Φ v = 2 [ ( ∂ v r ∂ r ) 2 + ( 1 r ∂ v θ ∂ θ + v r r ) 2 + ( ∂ v z ∂ z ) 2 ] + [ r ∂ ∂ r ( v θ r ) + 1 r ∂ v r ∂ θ ] 2 + [ 1 r ∂ v z ∂ θ + ∂ v θ ∂ z ] 2 + [ ∂ v r ∂ z + ∂ v z ∂ r ] 2 − 2 3 [ 1 r ∂ ∂ r ( r v r ) + 1 r ∂ v θ ∂ θ + ∂ v z ∂ z ] 2 2-1

3.球坐标系( r,θ,ϕ r , θ , ϕ )

球坐标系Spherical coordinates( r, θϕ  r,  θ ,  ϕ   ): NO.
ΦΦv=2[(vrr)2+(1rvθθ+vrr)2+(1rsinθvϕϕ+vr+vθcotθr)2]+[rr(vθr)+1rvrθ]2+[sinθrθ(vϕsinθ)+1rsinθvθϕ]2+[1rsinθvrϕ+rr(vϕr)]223[1r2r(r2vr)+1rsinθθ(vθsinθ)+1rsinθvϕϕ]2 Φ Φ v = 2 [ ( ∂ v r ∂ r ) 2 + ( 1 r ∂ v θ ∂ θ + v r r ) 2 + ( 1 r s i n θ ∂ v ϕ ∂ ϕ + v r + v θ c o t θ r ) 2 ] + [ r ∂ ∂ r ( v θ r ) + 1 r ∂ v r ∂ θ ] 2 + [ s i n θ r ∂ ∂ θ ( v ϕ s i n θ ) + 1 r s i n θ ∂ v θ ∂ ϕ ] 2 + [ 1 r s i n θ ∂ v r ∂ ϕ + r ∂ ∂ r ( v ϕ r ) ] 2 − 2 3 [ 1 r 2 ∂ ∂ r ( r 2 v r ) + 1 r s i n θ ∂ ∂ θ ( v θ s i n θ ) + 1 r s i n θ ∂ v ϕ ∂ ϕ ] 2 3-1

参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.

你可能感兴趣的:(传热学【Heat,Transfer】,流体力学【Fluid,Mechanics】)