【机器学习】机器学习之支持向量机

感知机模型:

       只能处理非常特殊的问题(线性可分的数据集的分类问题)

没有考虑泛化能力

 

线性可分概念:

     数据集能被一条线完美分割

 

损失函数的几何解释:

       损失函数 = 所有被误分类的样本点到当前分离平面的相对距离的总和

 

感知机算法:

       梯度下降法

 

学习速率/步长:损失函数求导后沿着梯度下降的方向,每次迭代迈进的步长

 

三种梯度下降法(最速下降法):

       随机梯度下降法(SGD):每个迭代中只使用一个样本来进行参数更新

       小批量梯度下降法(MBGD、):每个迭代中同时选用多个样本更新参数

       批量梯度下降法(BGD):每个迭代中同时选用所有样本更新参数

 

梯度下降法:

       求解无约束最优化问题的最常用的手段之一,实现过程简单高效。

      核心:求导,求函数的梯度。

 

梯度下降算法:

后期补上

 

 

 

感知机算法的对偶形式:

       拉格朗日对偶性:

             后期补上

 

 

 

 

支持向量机(Support Vector Machine):

 

函数间隔:后期补上

 

几何间隔:描述向量到超平面的几何距离

 

SVM算法:最大化几何间隔

 

线性SVM算法:

       引入间隔最大化的概念增强模型的泛化能力。

 

SVM算法的对偶形式:后期补上

 

SVM的训练:后期补上

      

 

最小最优化算法(SMO):

       每次迭代中专注于只有两个变量的优化问题,以期望在可以接受的时间内得到一个较优解

 

 

 

非线性算法:

       利用核技巧能使将线性算法升级为非线性算法

 

核方法:注重原理

核技巧:注重实际应用

 

核技巧:合理性、普适性、高效性

       将一个低维的线性不可分的数据映射到一个高维的空间,并期望映射后的数据在高维空间里是线性可分的

 

 

核感知机算法:

 后期补上

 

核SMO算法:

 后期补上

 

核SVM:

 后期补上

 

 

支持向量回归:

 后期补上

 

 

 

 

 

你可能感兴趣的:(Machine,Learning,机器学习算法理论与实战)