Kruskal算法求最小生成树-算法设计与分析实验3

题目: 求如图所示,用kruskal算法求下面图的最小生成树:



话不多说,程序如下:

#include
#include
#define N 7
using namespace std;
typedef struct _node{
    int val;
    int start;
    int end;
}Node;
Node V[N];
int cmp(const void *a, const void *b)
{
    return (*(Node *)a).val - (*(Node*)b).val;
}
int edge[N][3] = {  { 0, 1, 3 },
                    { 0, 4, 1 }, 
                    { 1, 2, 5 }, 
                    { 1, 4, 4 },
                    { 2, 3, 2 }, 
                    { 2, 4, 6 }, 
                    { 3, 4, 7} 
                    };

int father[N] = { 0, };
int cap[N] = {0,};

void make_set()              //初始化集合,让所有的点都各成一个集合,每个集合都只包含自己
{
    for (int i = 0; i < N; i++)
    {
        father[i] = i;
        cap[i] = 1;
    }
}

int find_set(int x)              //判断一个点属于哪个集合,点如果都有着共同的祖先结点,就可以说他们属于一个集合
{
    if (x != father[x])
     {                              
        father[x] = find_set(father[x]);
    }     
    return father[x];
}                                  

void Union(int x, int y)         //将x,y合并到同一个集合
{
    x = find_set(x);
    y = find_set(y);
    if (x == y)
        return;
    if (cap[x] < cap[y])
        father[x] = find_set(y);
    else
    {
        if (cap[x] == cap[y])
            cap[x]++;
        father[y] = find_set(x);
    }
}

int Kruskal(int n)
{
    int sum = 0;
    make_set();
    for (int i = 0; i < N; i++)//将边的顺序按从小到大取出来
    {
        if (find_set(V[i].start) != find_set(V[i].end))     //如果改变的两个顶点还不在一个集合中,就并到一个集合里,生成树的长度加上这条边的长度
        {
            Union(V[i].start, V[i].end);  //合并两个顶点到一个集合
            sum += V[i].val;
        }
    }
    return sum;
}
int main()
{
    for (int i = 0; i < N; i++)   //初始化边的数据,在实际应用中可根据具体情况转换并且读取数据,这边只是测试用例
    {
        V[i].start = edge[i][0];
        V[i].end = edge[i][1];
        V[i].val = edge[i][2];
    }
    qsort(V, N, sizeof(V[0]), cmp);
    cout << Kruskal(0)<


运行结果如下:

Kruskal算法求最小生成树-算法设计与分析实验3_第1张图片

从图中也可以看出,最小权值是: 1+3+5+2 = 11,那么这个实验的第一小题就是这样。

你可能感兴趣的:(算法设计与分析)