HDU 6191 Query on A Tree (dfs序+可持久化01Trie)

题意:给你一棵树,每个节点有一个权值,q次询问,每次询问求以u为根节点的子树异或上x的最大值。n,q <= 1e5


思路:要解决子树的问题,那么就是dfs序,解决异或最大值,那么就是01Trie,然后这题需就是根据dfs序建立可持

01Trie就好了。


代码:

#include
using namespace std;
const int maxn = 1e5+5;
const int maxnode = maxn*35;
int trie[maxnode][2], sz[maxnode], rt[maxn];
int n, q, cnt, a[maxn];
int in[maxn*4], out[maxn*4], fa[maxn*4], tot;
vector g[maxn];

int update(int pre, int i, int x)
{
    int now = ++cnt;
    if(!i)
    {
        trie[now][0] = trie[now][1] = 0;
        sz[now] = sz[pre]+1;
        return now;
    }
    int bt = ((x>>(i-1))&1);
    trie[now][1-bt] = trie[pre][1-bt];
    trie[now][bt] = update(trie[pre][bt], i-1, x);
    sz[now] = sz[trie[now][0]]+sz[trie[now][1]];
    return now;
}

int query(int l, int r, int i, int x)
{
    if(!i) return 0;
    int bt = ((x>>(i-1))&1);
    if(sz[trie[r][1-bt]]-sz[trie[l][1-bt]])
        return (1<<(i-1))+query(trie[l][1-bt], trie[r][1-bt], i-1, x);
    else
        return query(trie[l][bt], trie[r][bt], i-1, x);
}

void dfs(int u, int pre)
{
    in[u] = ++tot;
    rt[tot] = update(rt[tot-1], 31, a[u]);
    fa[u] = pre;
    for(int i = 0; i < g[u].size(); i++)
    {
        int v = g[u][i];
        if(v != pre)
            dfs(v, u);
    }
    out[u] = tot;
}

int main(void)
{
    while(cin >> n >> q)
    {
        for(int i = 0; i <= n; i++)
            g[i].clear();
        for(int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        for(int i = 2; i <= n; i++)
        {
            int tmp;
            scanf("%d", &tmp);
            g[tmp].push_back(i);
        }
        rt[0] = trie[0][0] = trie[0][1] = sz[0] = cnt = tot = 0;
        rt[0] = update(rt[0], 31, 0);
        dfs(1, 0);
        while(q--)
        {
            int u, x;
            scanf("%d%D", &u, &x);
            int ans = max(a[u]^x, query(rt[in[u]], rt[out[u]], 31, x));
            printf("%d\n", ans);
        }
    }
    return 0;
}


你可能感兴趣的:(字典树,dfs序&树链剖分)