- TIP-2025《Data Subdivision Based Dual-Weighted Robust Principal Component Analysis》
Christo3
机器学习人工智能机器学习算法
核心思想分析这篇论文提出了一个新颖的主成分分析(PCA)方法,称为DataSubdivisionBasedDual-WeightedRobustPrincipalComponentAnalysis(DRPCA),旨在解决传统PCA在处理包含噪声和异常值的数据时的鲁棒性问题。其核心思想包括以下几个方面:数据细分与双权重机制:传统PCA假设数据已中心化,并使用平方l2l_2l2-范数,这对噪声和异常值
- 主成分分析(PCA)例题——给定协方差矩阵
phoenix@Capricornus
PR书稿矩阵线性代数
向量xxx的相关矩阵为Rx=[0.30.10.10.10.3−0.10.1−0.10.3]{\bmR}_x=\begin{bmatrix}0.3&0.1&0.1\\0.1&0.3&-0.1\\0.1&-0.1&0.3\end{bmatrix}Rx=0.30.10.10.10.3−0.10.1−0.10.3计算输入向量的KL变换。解答Rx{\bmR}_xRx的特征值为λ0=0.1\lambda_0=
- 图像处理与机器学习项目:特征提取、PCA与分类器评估
pk_xz123456
深度学习仿真模型算法图像处理机器学习人工智能
图像处理与机器学习项目:特征提取、PCA与分类器评估项目概述本项目将完成一个完整的图像处理与机器学习流程,包括数据探索、特征提取、主成分分析(PCA)、分类器实现和评估五个关键步骤。我们将使用Python的OpenCV、scikit-learn和scikit-image库来处理图像数据并实现机器学习算法。importnumpyasnpimportmatplotlib.pyplotaspltimpo
- PCL 计算点云OBB包围盒——PCA主成分分析法
点云侠'
点云学习算法c++开发语言计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景1.4注意事项二、关键函数2.1头文件2.2读取点云2.3计算点云质心和协方差矩阵2.4协方差矩阵分解求特征值和特征向量2.5校正主方向2.6将输入点云转换至原点2.7计算包围盒2.8构建四元数和位移向量2.9结果可视化三、完整代码四、结果内容抄自CSDN点云侠:【2024最新版】PCL点云处理算法汇总(C++长期更新版)。质量无忧,永久免费,可放
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 基于PCA和Kmeans的餐馆地区分类研究
1.实践任务说明对《中国2019年分地区连锁餐饮企业数据》中的7个经营指标(V2-V8)进行主成分分析(PCA),通过降维提取核心特征。首先标准化数据,然后计算主成分的方差贡献率,按累积贡献率≥85%确定保留的主成分数量,最终输出降维后的主成分得分及因子载荷矩阵,简化后续分析。基于K-Means聚类算法对餐饮企业数据进行分析,首先读取true_restaurant.csv文件中的PC1指标数据并进
- 5.15 day21
AщYΘ
人工智能算法
知识点回顾:LDA线性判别PCA主成分分析t-sne降维自由作业:探索下什么时候用到降维?降维的主要应用?或者让ai给你出题,群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可视化的区别。一、何时需要使用降维?1.数据高维困境维度灾难(CurseofDimensionality):当特征维度超过样本数量时,模型容易过拟合存储与计算成本:高维数据需要更多存储空间,算法
- 机器学习——主成分分析 PCA
Nil0_
机器学习
目录简介一、基本原理1.数据变换2.协方差矩阵3.特征值和特征向量实施步骤应用选择主成分的数量二、代码实现优缺点分析优点缺点总结简介主成分分析(PCA)是机器学习领域中的一种重要算法,主要应用于数据的降维和特征提取。PCA的目的是通过保留数据集中的主要信息,将高维数据集转换为低维数据集,从而简化模型训练和提高模型性能。一、基本原理1.数据变换PCA通过线性变换将原始数据映射到新的特征空间,这个变换
- 聚类分析现状
云cia
机器学习人工智能
针对上述问题,一种结合降维技术和聚类算法的解决方案被广泛认可,即先采用降维技术,如主成分分析、局部线性嵌入或核方法等对数据进行降维,再对降维后的特征进行聚类.该方案虽然在一定程度上降低了高维空间的聚类难度,但由于数据降维是独立于聚类任务的,这意味着提取的特征往往并不具备簇类结构.子空间方法则提供另一种很好的思路.该方法假设高维数据分布于多个低维子空间的组合,通过将高维数据分割到各自所属的本征低维子
- 09_降维、特征提取与流行学习
白杆杆红伞伞
machinelearning人工智能python机器学习
描述利用无监督学习进行数据变换可能有很多种目的。最常见的目的就是可视化、压缩数据,以及寻找信息量更大的数据表示用于进一步的处理。为了实现这些目的,最简单的也是最常用的一种算法就是主成分分析。另外两种算法:非负矩阵分解(NMF)和t-SNE,前者通常用于特征提取,后者通常用于二维散点图的可视化。PCA主成分分析(降维)主成分分析(principalcomponentanalysis,PCA)是一种旋
- python学习day21
一叶知秋秋
python学习笔记学习
知识点回顾:1.LDA线性判别2.PCA主成分分析3.t-sne降维数据如前几期无监督降维定义:这类算法在降维过程中不使用任何关于数据样本的标签信息输入:只有特征矩阵X。目标:保留数据中尽可能多的方差(如PCA)。保留数据的局部或全局流形结构(如LLE,Isomap,t-SNE,UMAP)。找到能够有效重构原始数据的紧凑表示(如Autoencoder)。找到统计上独立的成分(如ICA)。典型算法:
- Python打卡训练营day21——2025.05.10
莱茵菜苗
python开发语言
LDA线性判别PCA主成分分析t-sne降维降维技术的应用场景与主要用途降维技术广泛应用于多个领域,尤其是在数据分析、机器学习和数据可视化中扮演着重要角色。通过减少数据的维度,不仅可以降低计算复杂度,还能帮助揭示隐藏在高维数据中的结构和模式1。应用场景数据预处理:在构建机器学习模型之前,降维可以去除冗余特征并提高模型性能。数据压缩:通过保留最重要的信息来减小存储需求和传输成本。噪声过滤:某些降维方
- TensorFlow深度学习实战(17)——主成分分析详解
盼小辉丶
深度学习tensorflow人工智能
TensorFlow深度学习实战(17)——主成分分析详解0.前言1.主成分分析2.使用TensorFlow实现PCA3.TensorFlow嵌入API小结系列链接0.前言主成分分析(PrincipalComponentAnalysis,PCA)是一种强大的降维工具,通过找到数据的主成分,可以有效地减少数据的复杂性,去除冗余特征,并保留数据的主要信息,在数据预处理、特征提取和可视化等方面都有广泛的
- NIPS-2013《Distributed PCA and $k$-Means Clustering》
Christo3
机器学习kmeans算法大数据人工智能
推荐深蓝学院的《深度神经网络加速:cuDNN与TensorRT》,课程面向就业,细致讲解CUDA运算的理论支撑与实践,学完可以系统化掌握CUDA基础编程知识以及TensorRT实战,并且能够利用GPU开发高性能、高并发的软件系统,感兴趣可以直接看看链接:深蓝学院《深度神经网络加速:cuDNN与TensorRT》核心思想该论文的核心思想是将主成分分析(PCA)与分布式kkk-均值聚类相结合,提出一种
- 深入详解线性代数基础知识:理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA)在人工智能中的应用
猿享天开
人工智能数学基础专讲线性代数人工智能矩阵特征向量
深入详解线性代数基础知识在人工智能中的应用线性代数是人工智能,尤其是机器学习和深度学习领域的基石。深入理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA),对于数据降维、特征提取和模型优化至关重要。本文将详细探讨这些线性代数的核心概念及其在人工智能中的应用,并辅以示例代码以助理解。1.矩阵与向量运算线性代数中的矩阵与向量运算是理解高维数据处理和模型训练的基
- 主成分分析在样本认证中的应用
牛新哲
主成分分析SIMCA模型NIR光谱样本认证多元校准
主成分分析在样本认证中的应用背景简介在化学计量学和数据分析领域,主成分分析(PCA)是一种强大的工具,用于简化数据、提取关键信息,并识别数据中的模式。本文将探讨PCA和软独立建模类分析(SIMCA)在样本认证中的实际应用,特别是通过近红外(NIR)光谱技术区分不同来源的猪肉脂肪。PCA与SIMCA在样本认证中的结合使用在章节4.9中,作者们通过一个真实案例展示了PCA和SIMCA模型如何协同工作,
- AI要掌握的知识
杰克逊的日记
人工智能AI技术
AI(人工智能)是一个跨学科的复杂领域,其知识体系涵盖理论基础、技术工具和实践应用等多个层面。以下从核心知识模块、技术工具、实践方向等角度,详细梳理AI从业者需要掌握的知识体系:一、数学基础:AI的理论基石1.线性代数核心概念:向量、矩阵、行列式、特征值与特征向量、矩阵分解(如PCA主成分分析的数学基础)。应用场景:数据降维、神经网络中的矩阵运算(如权重矩阵乘法)、图像变换(如旋转、缩放的矩阵表示
- 多元回归预测|基于经验模态分解结合主成分分析的长短记忆神经网络EMD-KPCA-LSTM(含LSTM和EMD-LSTM对比)实现风电数据预测附matlab代码
matlab科研社
预测模型神经网络lstm回归
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。内容介绍风电作为一种可再生能源,其发电量受多种因素影响,具有较强的波动性和间歇性。准确预测风电数据对于提高电网稳定性和优化调度具有重要意义。本文提出了一种基于经验模态分解(EMD)结合主成分分析(KPCA)的长短记忆神经网络(LSTM)模型(
- 【MATLAB】基于EMD-PCA-LSTM的回归预测模型
Lwcah(全网各平台账号同名)
MATLAB回归预测算法matlablstm回归
有意向获取代码,请转文末观看代码获取方式~1基本定义基于EMD-PCA-LSTM的回归预测模型是一种结合了经验模态分解(EmpiricalModeDecomposition,EMD)、主成分分析(PrincipalComponentAnalysis,PCA)和长短期记忆网络(LongShort-TermMemory,LSTM)的复杂回归序列预测方法。下面分别介绍这三个组成部分的基本原理以及它们是如
- 深度学习与传统算法在人脸识别领域的演进:从Eigenfaces到ArcFace
uncle_ll
人脸深度学习人脸人脸识别
一、传统人脸识别方法的发展与局限1.1Eigenfaces:主成分分析的经典实践算法原理Eigenfaces是基于主成分分析(PCA)的里程碑式方法。其核心思想是将人脸图像视为高维向量,通过协方差矩阵计算特征向量(即特征脸),将原始数据投影到由前k个最大特征值对应的特征向量张成的低维子空间。在FERET数据集上,Eigenfaces曾达到85%的识别准确率,证明了线性降维的有效性。优劣势对比✅优势
- 【自学笔记】流形学习
zyq~
机器学习笔记学习信息可视化流形学习机器学习人工智能
文章目录流形学习(MainfoldLearning)流形学习解决的问题1.数据的低维表示2.数据结构的理解3.数据可视化4.改善机器学习模型的输入流形理论概念惠特尼嵌入定理(WhitneyEmbeddingTheorem)主成分分析(PCA)局部线性嵌入(LLE,LocallyLinearEmbedding)等距映射(Isomap)t-分布邻域嵌入(t-SNE,t-distributedStoch
- 技术剖析|线性代数之特征值分解,支撑AI算法的数学原理
AI算力那些事儿
技术剖析线性代数人工智能算法
目录一、特征值分解的数学本质1、基本定义与核心方程2、几何解释与线性变换3、可对角化条件与分解形式二、特征值分解的计算方法1、特征多项式与代数解法2、数值计算方法3、计算实例与验证三、特征值分解在AI中的关键应用1、主成分分析(PCA)与数据降维2、图分析与网络科学3、矩阵分析与优化问题4、图像处理与信号分析四、特征值分解的扩展与相关技术1、奇异值分解(SVD)的关联2、广义特征值问题3、现代算法
- 基于EMD-PCA-LSTM的光伏功率预测模型研究
非著名架构师
大模型知识文档lstm人工智能rnn
摘要本文提出了一种结合经验模态分解(EMD)、主成分分析(PCA)和长短期记忆网络(LSTM)的混合预测模型,用于提高光伏功率预测的准确性。该模型首先利用EMD算法将非平稳的光伏功率序列分解为多个本征模态函数(IMF),然后通过PCA对多维气象特征进行降维处理,最后将处理后的特征输入LSTM网络进行预测。实验结果表明,与单一LSTM模型和传统预测方法相比,EMD-PCA-LSTM模型在预测精度和稳
- 机器学习系列-----主成分分析(PCA)
DK22151
机器学习机器学习人工智能算法
一、什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的线性降维技术,它通过正交变换将数据从高维空间映射到低维空间,同时尽量保留数据的方差。PCA的目的是将数据中最重要的特征提取出来,去掉冗余的信息,从而减少数据的维度,并且使得数据的解释更加直观。PCA不仅是数据预处理的一种手段,也在许多机器学习和数据分析中得到广泛应用。比如,图像
- 降维算法是什么
Nate Hillick
算法python开发语言
降维算法是一种将高维数据映射到低维空间的算法。它的目的是减少数据的维数,从而使得数据可视化、分析和处理更加容易。常见的降维算法包括主成分分析(PCA)、线性判别分析(LDA)和t-SNE。
- 机器学习基础算法11-鸢尾花数据集分析-PCA主成分分析与logistic回归(管道分析)
qq_42749341
机器学习-基础知识
目录数据集介绍PCA主成分分析1.基本原理2.代码实现逻辑回归-管道-Pipeline代码模型泛化能力分析数据集介绍鸢尾花数据集有三个类别,每个类别有50个样本。其中一个类别与另外两个线性可分,另外两个不能线性可分。PCA主成分分析1.基本原理在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为
- sklearn主成分分析pca用python实现(多媒体实验二)
长门yuki
本科机器学习
算术编码(多媒体实验一)sklearn主成分分析pca用python实现(多媒体实验二)BOW图像检索corel数据集(多媒体实验三)手写数字识别(多媒体实验五)原理建议看这篇博客:PCA的数学原理。写的非常清楚,弄明白实例就差不多懂了。但是弄明白不会写代码,那可以看看这个视频:Python实战PCA/主成分分析(文刀出品)。过程很简单,总结如下:矩阵X的维度是(m,n)。表示m组数据,n维向量。
- 【python 机器学习】sklearn主成分分析(PCA)
人才程序员
python机器学习sklearn人工智能目标检测神经网络深度学习
文章目录sklearn主成分分析(PCA)1.什么是主成分分析(PCA)?通俗介绍:学术解释:2.为什么要使用PCA?3.PCA的工作原理4.使用`sklearn`实现PCA4.1示例数据4.2标准化数据4.3应用PCA进行降维4.4查看方差解释5.主成分分析的应用6.总结sklearn主成分分析(PCA)在机器学习中,数据的维度往往很高,这不仅增加了计算的复杂性,还可能引发“维度灾难”问题。为了
- python:sklearn 主成分分析(PCA)
belldeep
pythonsklearnpythonsklearn机器学习PCA
参考书:《统计学习方法》第2版第16章主成分分析(PCA)示例编写test_pca_1.py如下#-*-coding:utf-8-*-"""主成分分析(PCA)"""importmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.decompositionimportPCA#加载鸢尾花数据集iris=load_i
- Matlab实现PCA-SVM主成分分析(PCA)结合支持向量机多特征分类预测的详细项目实例
nantangyuxi
MATLABmatlab支持向量机分类人工智能开发语言大数据算法
目录Matlab实她PCA-SVM主成分分析(PCA)结合支持向量机她特征分类预测她详细项目实例...1项目背景介绍...1项目目标她意义...2项目挑战及解决方案...3项目特点她创新...4项目应用领域...4项目效果预测图程序设计及代码示例...5项目模型架构...6项目模型描述及代码示例...7项目模型算法流程图...8项目目录结构设计及各模块功能说明...8项目应该注意事项...9项目扩
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息