目前主流的消息中间件有activemq,rabbitmq,rocketmq,kafka,我们要根据实际的业务场景来选择一款合适的消息中间件,关注的主要指标有,消息投递的可靠性,可维护性,吞吐量以及中间件的特色等重要指标来选择,大数据领域肯定是kafka,那么传统的业务场景就是解耦,异步,削峰。那么就在剩下的3款产品中选择一款,从吞吐量,社区的活跃度,消息的可靠性出发,一般的中小型公司选择rabbitmq来说可能更为合适。那么我们就来看看如何使用它吧。
环境准备
本案例基于springboot集成rabbitmq,本案例主要侧重要实际的code,对于基础理论知识请自行百度。
jdk-version:1.8
rabbitmq-version:3.7
springboot-version:2.1.4.RELEASE
pom文件
org.springframework.boot spring-boot-starter-amqp
yml配置文件
spring: rabbitmq: password: guest username: guest port: 5672 addresses: 127.0.0.1 #开启发送失败返回 publisher-returns: true #开启发送确认 publisher-confirms: true listener: simple: #指定最小的消费者数量. concurrency: 2 #指定最大的消费者数量. max-concurrency: 2 #开启ack acknowledge-mode: auto #开启ack direct: acknowledge-mode: auto #支持消息的确认与返回 template: mandatory: true
配置rabbitMq的姿势
姿势一
基于javaconfig
package com.lly.order.message; import org.springframework.amqp.core.*; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; /** * @ClassName RabbitMqConfig * @Description rabbitMq配置类 * @Author lly * @Date 2019-05-13 15:05 * @Version 1.0 **/ @Configuration public class RabbitMqConfig { public final static String DIRECT_QUEUE = "directQueue"; public final static String TOPIC_QUEUE_ONE = "topic_queue_one"; public final static String TOPIC_QUEUE_TWO = "topic_queue_two"; public final static String FANOUT_QUEUE_ONE = "fanout_queue_one"; public final static String FANOUT_QUEUE_TWO = "fanout_queue_two"; public final static String TOPIC_EXCHANGE = "topic_exchange"; public final static String FANOUT_EXCHANGE = "fanout_exchange"; public final static String TOPIC_ROUTINGKEY_ONE = "common_key"; public final static String TOPIC_ROUTINGKEY_TWO = "*.key"; // direct模式队列 @Bean public Queue directQueue() { return new Queue(DIRECT_QUEUE, true); } // topic 订阅者模式队列 @Bean public Queue topicQueueOne() { return new Queue(TOPIC_QUEUE_ONE, true); } @Bean public Queue topicQueueTwo() { return new Queue(TOPIC_QUEUE_TWO, true); } // fanout 广播者模式队列 @Bean public Queue fanoutQueueOne() { return new Queue(FANOUT_QUEUE_ONE, true); } @Bean public Queue fanoutQueueTwo() { return new Queue(FANOUT_QUEUE_TWO, true); } // topic 交换器 @Bean public TopicExchange topExchange() { return new TopicExchange(TOPIC_EXCHANGE); } // fanout 交换器 @Bean public FanoutExchange fanoutExchange() { return new FanoutExchange(FANOUT_EXCHANGE); } // 订阅者模式绑定 @Bean public Binding topExchangeBingingOne() { return BindingBuilder.bind(topicQueueOne()).to(topExchange()).with(TOPIC_ROUTINGKEY_ONE); } @Bean public Binding topicExchangeBingingTwo() { return BindingBuilder.bind(topicQueueTwo()).to(topExchange()).with(TOPIC_ROUTINGKEY_TWO); } // 广播模式绑定 @Bean public Binding fanoutExchangeBingingOne() { return BindingBuilder.bind(fanoutQueueOne()).to(fanoutExchange()); } @Bean public Binding fanoutExchangeBingingTwo() { return BindingBuilder.bind(fanoutQueueTwo()).to(fanoutExchange()); } }
姿势二
基于注解
package com.lly.order.message; import com.rabbitmq.client.Channel; import lombok.extern.slf4j.Slf4j; import org.springframework.amqp.core.AmqpTemplate; import org.springframework.amqp.core.ExchangeTypes; import org.springframework.amqp.core.Message; import org.springframework.amqp.rabbit.annotation.Exchange; import org.springframework.amqp.rabbit.annotation.Queue; import org.springframework.amqp.rabbit.annotation.QueueBinding; import org.springframework.amqp.rabbit.annotation.RabbitListener; import org.springframework.amqp.rabbit.connection.CorrelationData; import org.springframework.amqp.rabbit.core.RabbitTemplate; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import java.io.IOException; import java.time.LocalTime; import java.util.UUID; /** * @ClassName MQTest * @Description 消息队列测试 * @Author lly * @Date 2019-05-13 10:50 * @Version 1.0 **/ @Component @Slf4j public class MQTest implements RabbitTemplate.ConfirmCallback, RabbitTemplate.ReturnCallback { private final static String QUEUE = "test_queue"; @Autowired private AmqpTemplate amqpTemplate; @Autowired private RabbitTemplate rabbitTemplate; public MQTest(RabbitTemplate rabbitTemplate) { rabbitTemplate.setConfirmCallback(this); rabbitTemplate.setReturnCallback(this); } public void sendMq() { rabbitTemplate.convertAndSend("test_queue", "test_queue" + LocalTime.now()); log.info("发送消息:{}", "test_queue" + LocalTime.now()); } public void sendMqRabbit() { //回调id CorrelationData cId = new CorrelationData(UUID.randomUUID().toString()); // rabbitTemplate.convertAndSend(RabbitMqConfig.FANOUT_EXCHANGE, "", "广播者模式测试",cId); Object object = rabbitTemplate.convertSendAndReceive(RabbitMqConfig.FANOUT_EXCHANGE, "", "广播者模式测试", cId); log.info("发送消息:{},object:{}", "广播者模式测试" + LocalTime.now(), object); } //发送订阅者模式 public void sendMqExchange() { CorrelationData cId = new CorrelationData(UUID.randomUUID().toString()); CorrelationData cId01 = new CorrelationData(UUID.randomUUID().toString()); log.info("订阅者模式->发送消息:routing_key_one"); rabbitTemplate.convertSendAndReceive("topic_exchange", "routing_key_one", "routing_key_one" + LocalTime.now(), cId); log.info("订阅者模式->发送消息routing_key_two"); rabbitTemplate.convertSendAndReceive("topic_exchange", "routing_key_two", "routing_key_two" + LocalTime.now(), cId01); } //如果不存在,自动创建队列 @RabbitListener(queuesToDeclare = @Queue("test_queue")) public void receiverMq(String msg) { log.info("接收到队列消息:{}", msg); } //如果不存在,自动创建队列和交换器并且绑定 @RabbitListener(bindings = { @QueueBinding(value = @Queue(value = "topic_queue01", durable = "true"), exchange = @Exchange(value = "topic_exchange", type = ExchangeTypes.TOPIC), key = "routing_key_one")}) public void receiverMqExchage(String msg, Channel channel, Message message) throws IOException { long deliveryTag = message.getMessageProperties().getDeliveryTag(); try { log.info("接收到topic_routing_key_one消息:{}", msg); //发生异常 log.error("发生异常"); int i = 1 / 0; //告诉服务器收到这条消息 已经被我消费了 可以在队列删掉 这样以后就不会再发了 否则消息服务器以为这条消息没处理掉 后续还会在发 channel.basicAck(deliveryTag, false); } catch (Exception e) { log.error("接收消息失败,重新放回队列"); //requeu,为true,代表重新放入队列多次失败重新放回会导致队列堵塞或死循环问题, // 解决方案,剔除此消息,然后记录到db中去补偿 //channel.basicNack(deliveryTag, false, true); //拒绝消息 //channel.basicReject(deliveryTag, true); } } @RabbitListener(bindings = { @QueueBinding(value = @Queue(value = "topic_queue02", durable = "true"), exchange = @Exchange(value = "topic_exchange", type = ExchangeTypes.TOPIC), key = "routing_key_two")}) public void receiverMqExchageTwo(String msg) { log.info("接收到topic_routing_key_two消息:{}", msg); } @RabbitListener(queues = RabbitMqConfig.FANOUT_QUEUE_ONE) public void receiverMqFanout(String msg, Channel channel, Message message) throws IOException { long deliveryTag = message.getMessageProperties().getDeliveryTag(); try { log.info("接收到队列fanout_queue_one消息:{}", msg); channel.basicAck(deliveryTag, false); } catch (Exception e) { e.printStackTrace(); //多次失败重新放回会导致队列堵塞或死循环问题 丢弃这条消息 // channel.basicNack(message.getMessageProperties().getDeliveryTag(), false, false); log.error("接收消息失败"); } } @RabbitListener(queues = RabbitMqConfig.FANOUT_QUEUE_TWO) public void receiverMqFanoutTwo(String msg) { log.info("接收到队列fanout_queue_two消息:{}", msg); } /** * @return * @Author lly * @Description 确认消息是否发送到exchange * @Date 2019-05-14 15:36 * @Param [correlationData, ack, cause] **/ @Override public void confirm(CorrelationData correlationData, boolean ack, String cause) { log.info("消息唯一标识id:{}", correlationData); log.info("消息确认结果!"); log.error("消息失败原因,cause:{}", cause); } /** * @return * @Author lly * @Description 消息消费发生异常时返回 * @Date 2019-05-14 16:22 * @Param [message, replyCode, replyText, exchange, routingKey] **/ @Override public void returnedMessage(Message message, int replyCode, String replyText, String exchange, String routingKey) { log.info("消息发送失败id:{}", message.getMessageProperties().getCorrelationId()); log.info("消息主体 message : ", message); log.info("消息主体 message : ", replyCode); log.info("描述:" + replyText); log.info("消息使用的交换器 exchange : ", exchange); log.info("消息使用的路由键 routing : ", routingKey); } }
rabbitMq消息确认的三种方式
# 发送消息后直接确认消息 acknowledge-mode:none # 根据消息消费的情况,智能判定消息的确认情况 acknowledge-mode:auto # 手动确认消息的情况 acknowledge-mode:manual
我们以topic模式来试验下消息的ack
自动确认消息模式
手动确认消息模式
然后我们再次消费消息,发现消息是没有被确认的,所以可以被再次消费
发现同样的消息还是存在的没有被队列删除,必须手动去ack,我们修改队列1的手动ack看看效果
channel.basicAck(deliveryTag, false);
重启项目再次消费消息
再次查看队列里的消息,发现队列01里的消息被删除了,队列02的还是存在。
消费消息发生异常的情况,修改代码 模拟发生异常的情况下发生了什么, 异常发生了,消息被重放进了队列
但是会导致消息不停的循环消费,然后失败,致死循环调用大量服务器资源
所以我们正确的处理方式是,发生异常,将消息记录到db,再通过补偿机制来补偿消息,或者记录消息的重复次数,进行重试,超过几次后再放到db中。
总结
通过实际的code我们了解的rabbitmq在项目的具体的整合情况,消息ack的几种情况,方便在实际的场景中选择合适的方案来使用。如有不足,还望不吝赐教。希望对大家的学习有所帮助,也希望大家多多支持脚本之家。