python Dijkstra算法实现最短路径问题的方法

本文借鉴于张广河教授主编的《数据结构》,对其中的代码进行了完善。

从某源点到其余各顶点的最短路径

Dijkstra算法可用于求解图中某源点到其余各顶点的最短路径。假设G={V,{E}}是含有n个顶点的有向图,以该图中顶点v为源点,使用Dijkstra算法求顶点v到图中其余各顶点的最短路径的基本思想如下:

  • 使用集合S记录已求得最短路径的终点,初始时S={v}。
  • 选择一条长度最小的最短路径,该路径的终点w属于V-S,将w并入S,并将该最短路径的长度记为Dw。
  • 对于V-S中任一顶点是s,将源点到顶点s的最短路径长度记为Ds,并将顶点w到顶点s的弧的权值记为Dws,若Dw+Dws
  • 则将源点到顶点s的最短路径长度修改为Dw+Ds=ws。
  • 重复执行2和3,知道S=V。
  • 为了实现算法,
  • 使用邻接矩阵Arcs存储有向网,当i=j时,Arcs[i][j]=0;当i!=j时,若下标为i的顶点到下标为j的顶点有弧且弧的权值为w,则Arcs[i][j]=w,否则Arcs[i][j]=float(‘inf')即无穷大。
  • 使用Dist存储源点到每一个终点的最短路径长度。
  • 使用列表Path存储每一条最短路径中倒数第二个顶点的下标。
  • 使用flag记录每一个顶点是否已经求得最短路径,在思想中即是判断顶点是属于V集合,还是属于V-S集合。

代码实现

#构造有向图Graph
class Graph:
  def __init__(self,graph,labels): #labels为标点名称
    self.Arcs=graph
    self.VertexNum=graph.shape[0]
    self.labels=labels
def Dijkstra(self,Vertex,EndNode): #Vertex为源点,EndNode为终点
  Dist=[[] for i in range(self.VertexNum)] #存储源点到每一个终点的最短路径的长度
  Path=[[] for i in range(self.VertexNum)] #存储每一条最短路径中倒数第二个顶点的下标
  flag=[[] for i in range(self.VertexNum)] #记录每一个顶点是否求得最短路径
  index=0
  #初始化
  while index 
 

输出结果如下:

请输入源点
a
请输入终点
f
从顶点a到顶点f的最短路径为:
['a', 'c', 'e', 'f']
最短路径长度为:17

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

你可能感兴趣的:(python Dijkstra算法实现最短路径问题的方法)