- a. UFS write booster buffer(技术 1)
>Andre<
UFS4.0解读网络服务器运维
1.概述TLCNAND的写入性能明显低于SLCNAND,因为TLCbits需要更多的编程步骤,并且具有更高的纠错概率。为了提高写入性能,部分TLCNAND(正常存储器)被配置为SLCNAND,并暂时或永久地用作写入缓冲区。使用SLCNAND作为WriteBoosterBuffer,可以以更低的延迟处理写请求,并提高整体写性能。分配给用户区域的TLCNAND的某些部分被分配为WriteBooster
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- 高斯混合模型(GMM):用“高斯家族”描绘数据的“模样”
ningaiiii
机器学习与深度学习机器学习人工智能
高斯混合模型(GMM):用“高斯家族”描绘数据的“模样”1.引言高斯混合模型(GaussianMixtureModel,GMM)是一种基于概率密度的生成式模型。它的核心思想是用多个“高斯分布”(即正态分布)的加权组合来描述数据的分布。GMM就像是一个“画家”,用不同的“高斯画笔”描绘出数据的“模样”,特别适合处理复杂的分类任务。2.算法原理2.1模型结构GMM的核心组成包括:混合权重:每个高斯分量
- 探索LangChain中OpenAI模型的token级log probabilities
jkgSFS
langchaineasyui前端python
在AI模型的开发和调试中,了解每个生成token的概率是非常有用的。这些信息可以帮我们理解模型的决策过程,识别可能的错误。本篇文章将介绍如何通过LangChain与OpenAI整合来获取这些token级的logprobabilities。技术背景介绍什么是LogProbabilities?在自然语言处理中,logprobabilities是一种对token生成概率的度量。通常,这个值越高,表示生成
- 2024Web前端人事面试题总结精选_前端面试项目相关提问
2401_86638424
面试职场和发展
api然后我们前端直接调用,当然如果后台还没写好就先自己造假数据来完成。平常都是用webpack来构建项目等等。2、你觉得你个性上最大的优点是什么?回答提示:沉着冷静、条理清楚、立场坚定、顽强向上、乐于助人和关心他人、适应能力和幽默感、乐观和友爱。3、说你最大的缺点?回答提示:这个问题企业问的概率很大,通常不希望听到直接回答的缺点是什么等,如果求职者说自己小心眼、爱忌妒人、非常懒、脾气大、工作效率
- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- 【AI中数学-概率论-综合实例-包括python实现】 预测的守望者:动态贝叶斯网络在风险预警中的应用
云博士的AI课堂
AI中的数学人工智能概率论python贝叶斯网络机器学习AI数学
第四章:概率论-综合实例第2节预测的守望者:动态贝叶斯网络在风险预警中的应用在许多现实世界的应用中,预测和风险评估通常不仅依赖于静态的输入数据,而是需要考虑时间维度和动态变化。动态贝叶斯网络(DBN,DynamicBayesianNetwork)作为一种扩展了传统贝叶斯网络的工具,可以有效地处理时间序列数据,并进行时序预测。与静态贝叶斯网络不同,DBN能够通过建模系统状态随时间的变化,揭示出更为复
- 备战2025美赛数学建模,蒙特卡洛模拟算法,2025美赛数学建模A题+B题+C题+D题+E题思路+模型+代码(1.24第一时间更新,)
灿灿数模
人工智能
备战2025美赛数学建模,蒙特卡洛模拟算法,2025美赛数学建模A题+B题+C题+D题+E题思路+模型+代码(1.24第一时间更新,)更新见文末名片一、引言蒙特卡洛模拟算法是一种基于概率和统计理论的数值计算方法,通过随机抽样来近似复杂系统的概率问题。它以摩纳哥著名的赌场蒙特卡洛命名,象征着其基于随机性的特点。二、算法原理蒙特卡洛模拟算法的核心思想是利用随机抽样来估计一个函数的期望值或者某个概率分布
- 单片机AT32代码移植后芯片烧录一次后,无法再次烧录
GivemeAK
单片机嵌入式硬件stm32
最近工作中在移植AT32代码的时候遇到一个现象:现象描述:使用官方开发板调试好代码后准备移植到项目用的同款芯片板子,第一次连接后keil能够识别到芯片,但是第二次准备烧录时,芯片怎么都识别不出来。以为是芯片问题,再次换过芯片后还是烧录一次后就识别不到芯片了。看过官网上的相关文档FAQ,仍然无法解决。分析原因:因为是代码烧录一次后芯片就不能烧录了,所以大概率是芯片代码可能有问题。下面是几个常见的排查
- 新项目性能测试全攻略:从规划到落地
测试工程师成长之路
测试工程师成长之路性能测试
一、性能测试的重要性在当今数字化的时代,新项目如雨后春笋般不断涌现,而性能测试在其中扮演着至关重要的角色。对于一个新项目来说,性能的好坏直接影响着用户体验。想象一下,如果用户在使用一款电商APP时,加载商品页面需要漫长的等待时间,或者在进行支付操作时频繁出现卡顿,那么大概率会导致用户的流失,进而影响整个业务的发展。性能测试不仅关乎用户当下的使用感受,更是关乎项目的长期运营和业务的成败。从企业角度来
- 3d高斯泼溅学习
便携与感知组,研ing
3d
椭球集就是一堆3d高斯椭球集之位置与形状:协方差矩阵(包括旋转矩阵和缩放矩阵),要大多数都能表达实体的位置,实体的位置和形状要落在大概率范围内椭球集之球谐函数:代表球面上不同位置的值基函数,拟合颜色和形状1.球谐函数在形状上的拟合,阶数越高就越能描述原来的真实形状(用多项式(基函数)和傅立叶变换拟合)3d高斯Splatting里面用的是4阶的,参数量有16个拟合的函数r=f(θ,φ)2.球谐函数在
- 用Python实现概率语言模型(2-元语法模型)
peanutwang
python语言模型
首先构造一个语料库,由6句话组成,每句话3个字。corpus='她很香她很菜她很好他很菜他很好菜很好'.split()构造一个字典,存储一元的字数Count1={}遍历语料库,把每个字出现的次数存储在字典中。forsentenceincorpus:forwordinsentence:ifwordinCount1:Count1[word]+=1#如果word在字典中存在else:Count1[wor
- 机器算法之逻辑回归(Logistic Regression)详解
HappyAcmen
算法合集算法逻辑回归机器学习
一、什么是逻辑回归?逻辑回归并不是传统意义上的回归分析,而是一种用于处理二分类问题的线性模型。它通过计算样本属于某一类别的概率来进行分类,尽管名字中有“回归”二字,但它实际上是一种分类算法。简单来说,逻辑回归回答的是“这件事发生的可能性有多大”。二、逻辑回归的基本原理在讲原理之前,我们先来了解一下逻辑回归的数学基础。逻辑回归的核心是一个Logistic函数(或称为Sigmoid函数),它的公式如下
- RabbitMQ 可靠性、重复消费、顺序性、消息积压解决方案
鸨哥学JAVA
程序员编程Javarabbitmq分布式
前言为什么引入消息队列?引入MQ给我们解决了一些问题,但同时又引入了一些复杂的问题,这些问题是大型项目中必须解决的重点,更重要的是,面试也经常问。实际上消息队列可以说是没法百分之百保证可靠性的!RabbitMQ提供的相关机制也只是在于缩小消息丢失的概率,或者说提供了消息丢失后的我们可以记录日志的功能。在解决这些问题时有必要明白一点,其实小公司业务量不大,并发量不高的情况下这些问题是几乎不会发生的.
- 前端大文件OSS上传注意事项
前端
大文件上传是一个比较重要的交互场景,如上传入库比较大的Excel表格数据、上传影音文件等。如果文件体积比较大,或者网络条件不好时,上传的时间会比较长(要传输更多的报文,丢包重传的概率也更大),用户不能刷新页面,只能耐心等待请求完成。1.利用上传控件inputtype="file"绑定一个change事件,在回调中通过事件对象的e.target.files拿到这个文件对象,进行文件对象的slice方
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 路径规划:环境适应性路径规划_(7).路径规划的不确定性处理
zhubeibei168
机器人(二)机器人计算机视觉机器人导航人工智能数码相机
路径规划的不确定性处理在路径规划中,不确定性是一个常见的问题,尤其是在动态和复杂的环境中。不确定性可以来源于多种因素,包括传感器误差、环境变化、动态障碍物等。处理不确定性是确保路径规划算法在实际应用中能够稳定、可靠运行的关键。本节将详细探讨路径规划中的不确定性处理方法,包括概率模型、鲁棒优化、重规划策略等。1.不确定性的来源在路径规划中,不确定性主要来源于以下几个方面:1.1传感器误差传感器是路径
- 华为OD机试 - 手机App防沉迷系统(Python/JS/C/C++ 2024 D卷 100分)
哪 吒
华为odpythonjavascript算法七日集训
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述智能手机方便了我们生活的同时,也侵占了我们不少的时间。“手机Ap
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 方舟生存进化mysql_基于MySQL 的 SQL 优化总结_卡盟,辅助
weixin_36307344
方舟生存进化mysql
SonarQube搭建手记dnf辅助基于MySQL的SQL优化总结在数据库运维过程中,优化SQL是DBA团队的一样平常义务。例行SQL优化,不仅可以提高程序性能,还能减低线上故障的概率。现在常用的SQL优化方式包罗但不限于:营业层优化、SQL逻辑优化、索引优化等。其中索引优化通常通过调整索引或新增索引从而到达SQL优化的目的。索引优化往往可以在短时间内发生异常伟大的效果。---来自美团手艺团队SQ
- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- 软素质和专业能力要怎么考察?
喵呜刷题
面试面试
1.Ability软素质(特别是自驱力)怎么考察?①自驱力克服过最大的挑战/困难/苦是什么?最近几年的目标是什么?有为这个目标付出过什么?有大概路径吗?-有目标但行动很差的=光说不练=减分-一般几点到公司几点走?-我很少见到不勤奋能做好工作的,但这不是deal-breaker;加班多≠自驱力强,也有加班多但产出很差的,只是自驱的人从概率看通常工作时间比较长有什么主动改进工作/改变公司,并有一定结果
- 详解深度学习中的Dropout
nk妹妹
深度学习深度学习人工智能
Dropout是一种在神经网络训练中常用的正则化技术,其操作是在每次训练迭代中随机“丢弃”一部分神经元(即将其输出置为零)。以下是对这一操作的详细解释:一、基本思想Dropout的基本思想是减少神经元之间的复杂共适应关系,迫使网络在训练过程中不依赖于特定的神经元子集。这有助于增加模型的泛化能力,防止过拟合。二、具体实现随机选择:在每次训练迭代中,以一定的概率p(通常设定为0.2到0.5之间)随机选
- Python字典详解
2401_89224765
python开发语言
print(dict4)需要注意的是:fromkeys方法只用来创建新字典,不负责保存。当通过一个字典来调用fromkeys方法时,如果需要后续使用一定记得给他复制给其他的变量。②访问字典:第一阶段:基操勿6!如果要想获取字典中某个键的值,可以通过访问键的方式来显示对应的值。上代码:dict={‘线代’:“99”,“数据分析”:“99”,“概率论”:“98”}#创建字典print(‘小红同学的线代
- 蒙特卡洛模拟(Monte Carlo Simulation)详解
ballball~~
算法蒙特卡洛模拟算法机器学习
简介:个人学习分享,如有错误,欢迎批评指正。历史背景蒙特卡洛模拟的名称来源于摩纳哥的蒙特卡洛赌场,因其依赖于随机性和概率,与赌博中的随机过程有相似之处。该方法的雏形可以追溯到20世纪40年代,二战期间,美国数学家斯坦尼斯拉夫·乌拉姆(StanislawUlam)和约翰·冯·诺依曼(JohnvonNeumann)在研究核武器的概率计算时首次提出了利用随机采样解决复杂问题的思想。随着计算机技术的迅猛发
- dice系数 交叉熵_一文搞懂交叉熵损失
weixin_39721853
dice系数交叉熵
本文从信息论和最大似然估计得角度推导交叉熵作为分类损失函数的依据。从熵来看交叉熵损失信息量信息量来衡量一个事件的不确定性,一个事件发生的概率越大,不确定性越小,则其携带的信息量就越小。设\(X\)是一个离散型随机变量,其取值为集合\(X={x_0,x_1,\dots,x_n}\),则其概率分布函数为\(p(x)=Pr(X=x),x\inX\),则定义事件\(X=x_0\)的信息量为:\[I(x_0
- 【概率论与数理统计】第三章 多维随机变量及其分布(3)
Arthur古德曼
概率论与数理统计概率论多维随机变量二维随机变量独立性概率分布夏明亮
2随机变量的独立性2.1两个随机变量的独立性在多维随机变量中各分量的取值有时会互相影响,但有时也会毫无影响。例如,一个人的身高XXX和体重YYY之间就会互相影响,但与收入ZZZ一般就没什么影响。这里,我们根据两个事件的独立性引出两个随机变量的独立性:之前我们这样描述:事件{X≤x}\{X\lex\}{X≤x}与事件{Y≤y}\{Y\ley\}{Y≤y}的积事件{X≤x,Y≤y}\{X\lex,\Y
- 从零开始搭二维激光SLAM --- 序章
李太白lx
从零开始搭二维激光SLAMSLAM
为什么要做这个开源项目1我的SLAM接触史1.1硕士阶段从17年3月开始接触SLAM,到现在已经3年了。虽然时间很长,但并不是所有时间都在单纯的搞SLAM。17年3月,研一下学期的时候选的课题题目,基于SLAM的室内移动机器人导航技术研究。之前并没有接触过SLAM,ROS等等。就连c++都是16年研一上学期的时候学的(大一学过以后没再接触过)。从17年3月开始学ROS,开始了解SLAM,还看了概率
- 华为OD机试 - 压缩报文还原 - 栈(Python/JS/C/C++ 2023 B卷 100分)
哪 吒
搬砖工逆袭Java架构师华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述为了提高数据传输的效率,会对传输的报文进行压缩处理。输入一个压缩
- 华为OD机试 - 几何平均值最大子数(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述从一个长度为N的正整数数组numbers中找出长度至少为L且几何
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它