简单蚁群算法求解TSP的源程序
蚁群算法是新兴的仿生算法,最初是由意大利学者Dorigo M于1991年首次提出,由于具有较强的鲁棒性,优良的分布式计算机制和易于与其它方法结合等优点,成为人工智能领域的一个研究热点。本程序是实现简单的蚁群算法,TSP问题取的是att48,可从http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95获取,程序运行时间可能会比较长。(注:程序没有计算最后一个城市回来起点城市的距离)
function [y,val]=QACS
tic
load att48 att48;
MAXIT=300; % 最大循环次数
NC=48; % 城市个数
tao=ones(48,48);% 初始时刻各边上的信息最为1
rho=0.2; % 挥发系数
alpha=1;
beta=2;
Q=100;
mant=20; % 蚂蚁数量
iter=0; % 记录迭代次数
for i=1:NC % 计算各城市间的距离
for j=1:NC
distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);
end
end
bestroute=zeros(1,48); % 用来记录最优路径
routelength=inf; % 用来记录当前找到的最优路径长度
% for i=1:mant % 确定各蚂蚁初始的位置
% end
for ite=1:MAXIT
for ka=1:mant %考查第K只蚂蚁
deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零
[routek,lengthk]=travel(distance,tao,alpha,beta);
if lengthk routelength=lengthk;
bestroute=routek;
end
for i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量
deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk;
end
deltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;
end
for i=1:NC-1
for j=i+1:NC
if deltatao(i,j)==0
deltatao(i,j)=deltatao(j,i);
end
end
end
tao=(1-rho).*tao+deltatao;
end
y=bestroute;
val=routelength;
toc
function [y,val]=travel(distance,tao,alpha,beta) % 某只蚂蚁找到的某条路径
[m,n]=size(distance);
p=fix(m*rand)+1;
val=0; % 初始路径长度设为 0
tabuk=[p]; % 假设该蚂蚁都是从第 p 个城市出发的
for i=1:m-1
np=tabuk(length(tabuk)); % 蚂蚁当前所在的城市号
p_sum=0;
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
p_sum=p_sum+tao(np,j)^alpha*ada^beta;
end
end
cp=zeros(1,m); % 转移概率
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
cp(j)=tao(np,j)^alpha*ada^beta/p_sum;
end
end
NextCity=pchoice(cp);
tabuk=[tabuk,NextCity];
val=val+distance(np,NextCity);
end
y=tabuk;
function y=isin(x,A) % 判断数 x 是否在向量 A 中,如在返回 1 ,否则返回 0
y=0;
for i=1:length(A)
if A(i)==x
y=1;
break;
end
end
function y=pchoice(A)
a=rand;
tempA=zeros(1,length(A)+1);
for i=1:length(A)
tempA(i+1)=tempA(i)+A(i);
end
for i=2:length(tempA)
if a<=tempA(i)
y=i-1;
break;
end
end