AntDB的Cluster Plan与PGXC的Remote Query Plan区别

原文链接: https://my.oschina.net/zaclu/blog/1613502

比较AntDB Cluster Plan与PGXC Remote Query Plan的区别

AntDB 3.1版本引入Cluster Plan,区别于原PGXC的执行计划,通过Reduce Plan支持数据的实时动态分布,将原本PGXC无法下沉到Datanode执行的执行计划做了优化,使得执行计划的执行压力分散到各个Datanode节点,一方面减轻Coordinator节点的性能压力,另一方面提高了SQL的执行效率。


select从句、agg

  • SQL
SELECT unique2
	, (
		SELECT COUNT(1)
		FROM onek
		WHERE odd > 10
	) AS cnt
FROM tenk1;
  • Cluster Plan
                                         QUERY PLAN                                         
--------------------------------------------------------------------------------------------
 Cluster Gather  (cost=974.46..4089.21 rows=10000 width=12)
   Plan id: 0
   ->  Seq Scan on tenk1  (cost=0.00..114.75 rows=2500 width=12)
         Plan id: 1
         InitPlan 1 (returns $0)
           ->  Cluster Reduce  (cost=10.25..11.76 rows=1 width=8)
                 Plan id: 2
                 ->  Finalize Aggregate  (cost=18.51..18.52 rows=1 width=8)
                       Plan id: 3
                       ->  Cluster Reduce  (cost=17.89..18.50 rows=4 width=8)
                             Plan id: 4
                             ->  Partial Aggregate  (cost=21.11..21.12 rows=1 width=8)
                                   Plan id: 5
                                   ->  Seq Scan on onek  (cost=0.00..20.88 rows=95 width=0)
                                         Plan id: 6
                                         Filter: (odd > 10)
(16 rows)
  • Remote Query Plan
                                             QUERY PLAN                                              
-----------------------------------------------------------------------------------------------------
 Result  (cost=974.46..10433.46 rows=10000 width=12)
   Plan id: 0
   InitPlan 1 (returns $0)
     ->  Aggregate  (cost=974.45..974.46 rows=1 width=8)
           Plan id: 2
           ->  Data Node Scan on onek "_REMOTE_TABLE_QUERY__1"  (cost=0.00..973.50 rows=379 width=0)
                 Plan id: 3
                 Node/s: dn1, dn2, dn3, dn4
   ->  Data Node Scan on tenk1 "_REMOTE_TABLE_QUERY_"  (cost=0.00..9359.00 rows=10000 width=4)
         Plan id: 1
         Node/s: dn1, dn2, dn3, dn4
(11 rows)

select从句、agg、not in

  • SQL
SELECT unique2
	, (
		SELECT COUNT(1)
		FROM onek
		WHERE odd > 10
	) AS cnt
FROM tenk1
WHERE even NOT IN (
	SELECT COUNT(1)
	FROM tenk2
	WHERE even < 100
);
  • Cluster Plan
                                         QUERY PLAN                                         
--------------------------------------------------------------------------------------------
 Cluster Gather  (cost=975.64..7458.39 rows=20000 width=12)
   Plan id: 0
   ->  Seq Scan on tenk1  (cost=1.18..483.93 rows=5000 width=12)
         Plan id: 1
         Filter: (NOT (hashed SubPlan 2))
         InitPlan 1 (returns $0)
           ->  Cluster Reduce  (cost=10.25..11.76 rows=1 width=8)
                 Plan id: 2
                 ->  Finalize Aggregate  (cost=18.51..18.52 rows=1 width=8)
                       Plan id: 3
                       ->  Cluster Reduce  (cost=17.89..18.50 rows=4 width=8)
                             Plan id: 4
                             ->  Partial Aggregate  (cost=21.11..21.12 rows=1 width=8)
                                   Plan id: 5
                                   ->  Seq Scan on onek  (cost=0.00..20.88 rows=95 width=0)
                                         Plan id: 6
                                         Filter: (odd > 10)
         SubPlan 2
           ->  Cluster Reduce  (cost=3.21..4.71 rows=1 width=8)
                 Plan id: 7
                 ->  Finalize Aggregate  (cost=4.42..4.43 rows=1 width=8)
                       Plan id: 8
                       ->  Cluster Reduce  (cost=3.80..4.41 rows=4 width=8)
                             Plan id: 9
                             ->  Partial Aggregate  (cost=3.50..3.51 rows=1 width=8)
                                   Plan id: 10
                                   ->  Seq Scan on tenk2  (cost=0.00..3.44 rows=25 width=0)
                                         Plan id: 11
                                         Filter: (even < 100)
(29 rows)
  • Remote Query Plan
                                                 QUERY PLAN                                                 
------------------------------------------------------------------------------------------------------------
 Result  (cost=974.46..38605.46 rows=20000 width=12)
   Plan id: 0
   InitPlan 1 (returns $0)
     ->  Aggregate  (cost=974.45..974.46 rows=1 width=8)
           Plan id: 2
           ->  Data Node Scan on onek "_REMOTE_TABLE_QUERY__1"  (cost=0.00..973.50 rows=379 width=0)
                 Plan id: 3
                 Node/s: dn1, dn2, dn3, dn4
   ->  Data Node Scan on tenk1 "_REMOTE_TABLE_QUERY_"  (cost=0.00..37431.00 rows=20000 width=4)
         Plan id: 1
         Node/s: dn1, dn2, dn3, dn4
         Coordinator quals: (NOT (hashed SubPlan 2))
         SubPlan 2
           ->  Aggregate  (cost=281.00..281.01 rows=1 width=8)
                 Plan id: 4
                 ->  Data Node Scan on tenk2 "_REMOTE_TABLE_QUERY__2"  (cost=0.00..280.75 rows=100 width=0)
                       Plan id: 5
                       Node/s: dn1, dn2, dn3, dn4
(18 rows)

select从句、agg、with、子查询、in

  • SQL
SELECT COUNT(1) AS c
FROM (
    WITH t_tenk2 AS (
            SELECT *
            FROM tenk2
            WHERE even < 100
        )
    SELECT *
    FROM (
        WITH t1 AS (
                SELECT *
                FROM onek
                WHERE odd < 1000
            )
        SELECT *
        FROM t1
            LEFT JOIN tenk1 t2 ON 1 = 1
        WHERE t1.unique1 = t2.unique1
            AND t1.unique2 IN (
                SELECT COUNT(1)
                FROM t_tenk2
                WHERE unique2 < 100
            )
    ) mm
) nn;
  • Cluster Plan
                                              QUERY PLAN                                              
------------------------------------------------------------------------------------------------------
 Cluster Gather  (cost=1655.02..1655.33 rows=1 width=8)
   Plan id: 0
   ->  Aggregate  (cost=655.02..655.03 rows=1 width=8)
         Plan id: 1
         ->  Hash Join  (cost=565.77..610.02 rows=2000 width=488)
               Plan id: 4
               Hash Cond: (t1.unique2 = (count(1)))
               CTE t_tenk2
                 ->  Seq Scan on tenk2  (cost=0.00..118.00 rows=1260 width=244)
                       Plan id: 16
                       Filter: (even < 100)
               CTE t1
                 ->  Seq Scan on onek  (cost=0.00..20.88 rows=250 width=244)
                       Plan id: 17
                       Filter: (odd < 1000)
               ->  Cluster Reduce  (cost=467.20..496.25 rows=4000 width=4)
                     Plan id: 5
                     ->  Hash Join  (cost=582.75..607.06 rows=1000 width=4)
                           Plan id: 6
                           Hash Cond: (t1.unique1 = t2.unique1)
                           ->  CTE Scan on t1  (cost=0.00..20.88 rows=250 width=8)
                                 Plan id: 7
                           ->  Hash  (cost=457.75..457.75 rows=10000 width=4)
                                 Plan id: 8
                                 ->  Seq Scan on tenk1 t2  (cost=0.00..457.75 rows=10000 width=4)
                                       Plan id: 9
               ->  Hash  (cost=98.56..98.56 rows=1 width=8)
                     Plan id: 10
                     ->  Finalize Aggregate  (cost=98.54..98.55 rows=1 width=8)
                           Plan id: 12
                           ->  Cluster Reduce  (cost=97.92..98.53 rows=4 width=8)
                                 Plan id: 13
                                 ->  Partial Aggregate  (cost=121.15..121.16 rows=1 width=8)
                                       Plan id: 14
                                       ->  CTE Scan on t_tenk2  (cost=0.00..118.00 rows=1260 width=0)
                                             Plan id: 15
                                             Filter: (unique2 < 100)
(37 rows)
  • Remote Query Plan
                                                 QUERY PLAN                                                 
------------------------------------------------------------------------------------------------------------
 Aggregate  (cost=48486.73..48486.74 rows=1 width=8)
   Plan id: 0
   ->  Hash Join  (cost=39022.18..39069.73 rows=2000 width=488)
         Plan id: 3
         Hash Cond: (t1.unique1 = unique1)
         CTE t_tenk2
           ->  Data Node Scan on tenk2 "_REMOTE_TABLE_QUERY_"  (cost=0.00..9372.00 rows=5042 width=244)
                 Plan id: 12
                 Node/s: dn1, dn2, dn3, dn4
         CTE t1
           ->  Data Node Scan on onek "_REMOTE_TABLE_QUERY_"  (cost=0.00..973.50 rows=1000 width=244)
                 Plan id: 13
                 Node/s: dn1, dn2, dn3, dn4
         ->  Hash Join  (cost=117.68..141.48 rows=500 width=4)
               Plan id: 4
               Hash Cond: (t1.unique2 = (count(1)))
               ->  CTE Scan on t1  (cost=0.00..20.00 rows=1000 width=8)
                     Plan id: 5
               ->  Hash  (cost=117.67..117.67 rows=1 width=8)
                     Plan id: 6
                     ->  Aggregate  (cost=117.65..117.66 rows=1 width=8)
                           Plan id: 8
                           ->  CTE Scan on t_tenk2  (cost=0.00..113.44 rows=1681 width=0)
                                 Plan id: 9
                                 Filter: (unique2 < 100)
         ->  Hash  (cost=37431.00..37431.00 rows=40000 width=4)
               Plan id: 10
               ->  Data Node Scan on tenk1 "_REMOTE_TABLE_QUERY_"  (cost=0.00..37431.00 rows=40000 width=4)
                     Plan id: 11
                     Node/s: dn1, dn2, dn3, dn4
(30 rows)

select从句、agg、with、子查询、not in

  • SQL
SELECT COUNT(1) AS c
FROM (
    WITH t_tenk2 AS (
            SELECT *
            FROM tenk2
            WHERE even < 100
        )
    SELECT *
    FROM (
        WITH t1 AS (
                SELECT *
                FROM onek
                WHERE odd < 1000
            )
        SELECT *
        FROM t1
            LEFT JOIN tenk1 t2 ON 1 = 1
        WHERE t1.unique1 = t2.unique1
            AND t1.unique2 NOT IN (
                SELECT COUNT(1)
                FROM t_tenk2
                WHERE unique2 < 100
            )
    ) mm
) nn;
  • Cluster Plan
                                                     QUERY PLAN                                                     
--------------------------------------------------------------------------------------------------------------------
 Finalize Aggregate  (cost=653.28..653.29 rows=1 width=8)
   Plan id: 0
   ->  Cluster Gather  (cost=652.06..653.27 rows=4 width=8)
         Plan id: 1
         ->  Partial Aggregate  (cost=652.06..652.07 rows=1 width=8)
               Plan id: 2
               ->  Hash Join  (cost=582.75..607.06 rows=500 width=488)
                     Plan id: 5
                     Hash Cond: (t1.unique1 = t2.unique1)
                     CTE t_tenk2
                       ->  Seq Scan on tenk2  (cost=0.00..118.00 rows=1260 width=244)
                             Plan id: 9
                             Filter: (even < 100)
                     CTE t1
                       ->  Seq Scan on onek  (cost=0.00..20.88 rows=250 width=244)
                             Plan id: 10
                             Filter: (odd < 1000)
                     ->  CTE Scan on t1  (cost=0.00..20.88 rows=250 width=4)
                           Plan id: 6
                           Filter: (NOT (hashed SubPlan 3))
                           SubPlan 3
                             ->  Cluster Reduce  (cost=50.27..51.77 rows=1 width=8)
                                   Plan id: 11
                                   ->  Finalize Aggregate  (cost=98.54..98.55 rows=1 width=8)
                                         Plan id: 12
                                         ->  Cluster Reduce  (cost=97.92..98.53 rows=4 width=8)
                                               Plan id: 13
                                               ->  Partial Aggregate  (cost=121.15..121.16 rows=1 width=8)
                                                     Plan id: 14
                                                     ->  CTE Scan on t_tenk2  (cost=0.00..118.00 rows=1260 width=0)
                                                           Plan id: 15
                                                           Filter: (unique2 < 100)
                     ->  Hash  (cost=457.75..457.75 rows=10000 width=4)
                           Plan id: 7
                           ->  Seq Scan on tenk1 t2  (cost=0.00..457.75 rows=10000 width=4)
                                 Plan id: 8
(36 rows)
  • Remote Query Plan
                                                 QUERY PLAN                                                 
------------------------------------------------------------------------------------------------------------
 Aggregate  (cost=48365.25..48365.26 rows=1 width=8)
   Plan id: 0
   ->  Hash Join  (cost=38904.50..38948.25 rows=2000 width=488)
         Plan id: 3
         Hash Cond: (t1.unique1 = unique1)
         CTE t_tenk2
           ->  Data Node Scan on tenk2 "_REMOTE_TABLE_QUERY_"  (cost=0.00..9372.00 rows=5042 width=244)
                 Plan id: 7
                 Node/s: dn1, dn2, dn3, dn4
         CTE t1
           ->  Data Node Scan on onek "_REMOTE_TABLE_QUERY_"  (cost=0.00..973.50 rows=1000 width=244)
                 Plan id: 8
                 Node/s: dn1, dn2, dn3, dn4
         ->  CTE Scan on t1  (cost=0.00..20.00 rows=500 width=4)
               Plan id: 4
               Filter: (NOT (hashed SubPlan 3))
               SubPlan 3
                 ->  Aggregate  (cost=117.65..117.66 rows=1 width=8)
                       Plan id: 9
                       ->  CTE Scan on t_tenk2  (cost=0.00..113.44 rows=1681 width=0)
                             Plan id: 10
                             Filter: (unique2 < 100)
         ->  Hash  (cost=37431.00..37431.00 rows=40000 width=4)
               Plan id: 5
               ->  Data Node Scan on tenk1 "_REMOTE_TABLE_QUERY_"  (cost=0.00..37431.00 rows=40000 width=4)
                     Plan id: 6
                     Node/s: dn1, dn2, dn3, dn4
(27 rows)

select从句、agg、with、subquery、not in

  • SQL
SELECT COUNT(1) AS c
FROM (
    WITH t_onek AS (
            SELECT *
            FROM onek
            WHERE even < 100
        )
    SELECT *, 'xxx' AS x
    FROM (
        WITH t1 AS (
                SELECT *
                FROM tenk1
                WHERE odd < 1000
            ), 
            t2 AS (
                SELECT *
                FROM tenk2
                WHERE odd > 1000
                    AND odd < 2000
            )
        SELECT *
        FROM t1
            LEFT JOIN t2 ON 1 = 1
        WHERE t1.unique1 = t2.unique1
            AND t1.unique2 IN (
                SELECT COUNT(1)
                FROM t_onek
                WHERE unique2 < 100
            )
    ) mm
) nn;
  • Cluster Plan
                                               QUERY PLAN                                                
---------------------------------------------------------------------------------------------------------
 Cluster Gather  (cost=1534.06..1534.37 rows=1 width=8)
   Plan id: 0
   ->  Aggregate  (cost=534.06..534.07 rows=1 width=8)
         Plan id: 1
         ->  Subquery Scan on mm  (cost=19.85..532.81 rows=100 width=520)
               Plan id: 3
               CTE t_onek
                 ->  Seq Scan on onek  (cost=0.00..20.88 rows=250 width=244)
                       Plan id: 15
                       Filter: (even < 100)
               ->  Hash Join  (cost=19.85..531.81 rows=100 width=488)
                     Plan id: 4
                     Hash Cond: (t1.unique2 = (count(1)))
                     CTE t1
                       ->  Seq Scan on tenk1  (cost=0.00..482.75 rows=10000 width=244)
                             Plan id: 16
                             Filter: (odd < 1000)
                     CTE t2
                       ->  Seq Scan on tenk2  (cost=0.00..124.25 rows=0 width=244)
                             Plan id: 17
                             Filter: ((odd > 1000) AND (odd < 2000))
                     ->  Cluster Reduce  (cost=1.00..512.20 rows=200 width=4)
                           Plan id: 5
                           ->  Nested Loop  (cost=0.00..638.25 rows=50 width=4)
                                 Plan id: 6
                                 Join Filter: (t1.unique1 = t2.unique1)
                                 ->  CTE Scan on t2  (cost=0.00..124.25 rows=0 width=4)
                                       Plan id: 7
                                 ->  CTE Scan on t1  (cost=0.00..482.75 rows=10000 width=8)
                                       Plan id: 8
                     ->  Hash  (cost=18.84..18.84 rows=1 width=8)
                           Plan id: 9
                           ->  Finalize Aggregate  (cost=18.82..18.83 rows=1 width=8)
                                 Plan id: 11
                                 ->  Cluster Reduce  (cost=18.20..18.81 rows=4 width=8)
                                       Plan id: 12
                                       ->  Partial Aggregate  (cost=21.50..21.51 rows=1 width=8)
                                             Plan id: 13
                                             ->  CTE Scan on t_onek  (cost=0.00..20.88 rows=250 width=0)
                                                   Plan id: 14
                                                   Filter: (unique2 < 100)
(41 rows)
  • Remote Query Plan
                                                   QUERY PLAN                                                   
----------------------------------------------------------------------------------------------------------------
 Aggregate  (cost=48879.91..48879.92 rows=1 width=8)
   Plan id: 0
   ->  Subquery Scan on mm  (cost=47924.90..48878.66 rows=100 width=520)
         Plan id: 2
         CTE t_onek
           ->  Data Node Scan on onek "_REMOTE_TABLE_QUERY_"  (cost=0.00..973.50 rows=1000 width=244)
                 Plan id: 12
                 Node/s: dn1, dn2, dn3, dn4
         ->  Hash Join  (cost=46951.40..47904.16 rows=100 width=488)
               Plan id: 3
               Hash Cond: (t1.unique2 = (count(1)))
               CTE t1
                 ->  Data Node Scan on tenk1 "_REMOTE_TABLE_QUERY_"  (cost=0.00..37531.00 rows=40000 width=244)
                       Plan id: 13
                       Node/s: dn1, dn2, dn3, dn4
               CTE t2
                 ->  Data Node Scan on tenk2 "_REMOTE_TABLE_QUERY_"  (cost=0.00..9397.00 rows=1 width=244)
                       Plan id: 14
                       Node/s: dn1, dn2, dn3, dn4
               ->  Hash Join  (cost=0.03..952.03 rows=200 width=4)
                     Plan id: 4
                     Hash Cond: (t1.unique1 = t2.unique1)
                     ->  CTE Scan on t1  (cost=0.00..800.00 rows=40000 width=8)
                           Plan id: 5
                     ->  Hash  (cost=0.02..0.02 rows=1 width=4)
                           Plan id: 6
                           ->  CTE Scan on t2  (cost=0.00..0.02 rows=1 width=4)
                                 Plan id: 7
               ->  Hash  (cost=23.35..23.35 rows=1 width=8)
                     Plan id: 8
                     ->  Aggregate  (cost=23.33..23.34 rows=1 width=8)
                           Plan id: 10
                           ->  CTE Scan on t_onek  (cost=0.00..22.50 rows=333 width=0)
                                 Plan id: 11
                                 Filter: (unique2 < 100)
(35 rows)

转载于:https://my.oschina.net/zaclu/blog/1613502

你可能感兴趣的:(AntDB的Cluster Plan与PGXC的Remote Query Plan区别)