基于Kmeans的证件照背景色替换算法

I =imread('blue.jpg');
[m,n,d]=size(I); 

data=[];
for i = 1:m
    for j=1:n
             data=[data;I(i,j,1),I(i,j,2),I(i,j,3)];
    end
end
[IDX,C,sumd,D]=kmeans(double(data),4);
k=mode(IDX)%元素出现最多的元素,假定背景颜色比其他种类的颜色都多
T=I;
for i = 1:m
    for j=1:n
        if IDX((i-1)*n+j)==k
            T(i,j,1)=255;
            T(i,j,2)=255;
            T(i,j,3)=255;
        end
    end
end
figure
imshow(T)
imwrite(T,strcat('white','.jpg'))
hold on;

%背景不是最多,生成所有可能替换的结果
for k=1:4
    T=I;
    for i = 1:m
        for j=1:n
            if IDX((i-1)*n+j)==k
                T(i,j,1)=255;
                T(i,j,2)=255;
                T(i,j,3)=255;
            end
        end
    end
    figure
    imshow(T)
    imwrite(T,strcat(num2str(k),'.jpg'))
    hold on;
end

原照片:

基于Kmeans的证件照背景色替换算法_第1张图片

 
  

结果(white.jpg)

基于Kmeans的证件照背景色替换算法_第2张图片

美图秀秀自动抠图(美图秀秀.jpg)

基于Kmeans的证件照背景色替换算法_第3张图片

ps(ps.jpg

基于Kmeans的证件照背景色替换算法_第4张图片

附Kmeans源码:

function [idxbest, Cbest, sumDbest, Dbest] = kmeans(X, k, varargin)
%KMEANS K-means clustering.
%   IDX = KMEANS(X, K) partitions the points in the N-by-P data matrix X
%   into K clusters.  This partition minimizes the sum, over all clusters, of
%   the within-cluster sums of point-to-cluster-centroid distances.  Rows of X
%   correspond to points, columns correspond to variables.  Note: when X is a
%   vector, KMEANS treats it as an N-by-1 data matrix, regardless of its
%   orientation.  KMEANS returns an N-by-1 vector IDX containing the cluster
%   indices of each point.  By default, KMEANS uses squared Euclidean
%   distances.
%
%   KMEANS treats NaNs as missing data, and ignores any rows of X that
%   contain NaNs.
%
%   [IDX, C] = KMEANS(X, K) returns the K cluster centroid locations in
%   the K-by-P matrix C.
%
%   [IDX, C, SUMD] = KMEANS(X, K) returns the within-cluster sums of
%   point-to-centroid distances in the 1-by-K vector sumD.
%
%   [IDX, C, SUMD, D] = KMEANS(X, K) returns distances from each point
%   to every centroid in the N-by-K matrix D.
%
%   [ ... ] = KMEANS(..., 'PARAM1',val1, 'PARAM2',val2, ...) specifies
%   optional parameter name/value pairs to control the iterative algorithm
%   used by KMEANS.  Parameters are:
%
%   'Distance' - Distance measure, in P-dimensional space, that KMEANS
%      should minimize with respect to.  Choices are:
%          'sqEuclidean'  - Squared Euclidean distance (the default)
%          'cityblock'    - Sum of absolute differences, a.k.a. L1 distance
%          'cosine'       - One minus the cosine of the included angle
%                           between points (treated as vectors)
%          'correlation'  - One minus the sample correlation between points
%                           (treated as sequences of values)
%          'Hamming'      - Percentage of bits that differ (only suitable
%                           for binary data)
%
%   'Start' - Method used to choose initial cluster centroid positions,
%      sometimes known as "seeds".  Choices are:
%          'sample'  - Select K observations from X at random (the default)
%          'uniform' - Select K points uniformly at random from the range
%                      of X.  Not valid for Hamming distance.
%          'cluster' - Perform preliminary clustering phase on random 10%
%                      subsample of X.  This preliminary phase is itself
%                      initialized using 'sample'.
%           matrix   - A K-by-P matrix of starting locations.  In this case,
%                      you can pass in [] for K, and KMEANS infers K from
%                      the first dimension of the matrix.  You can also
%                      supply a 3D array, implying a value for 'Replicates'
%                      from the array's third dimension.
%
%   'Replicates' - Number of times to repeat the clustering, each with a
%      new set of initial centroids.  A positive integer, default is 1.
%
%   'EmptyAction' - Action to take if a cluster loses all of its member
%      observations.  Choices are:
%          'error'     - Treat an empty cluster as an error (the default)
%          'drop'      - Remove any clusters that become empty, and set
%                        the corresponding values in C and D to NaN.
%          'singleton' - Create a new cluster consisting of the one
%                        observation furthest from its centroid.
%
%   'Options' - Options for the iterative algorithm used to minimize the
%       fitting criterion, as created by STATSET.  Choices of STATSET
%       parameters are:
%
%          'Display'  - Level of display output.  Choices are 'off', (the
%                       default), 'iter', and 'final'.
%          'MaxIter'  - Maximum number of iterations allowed.  Default is 100.
%
%          'UseParallel'
%          'UseSubStreams'
%          'Streams'  - These fields specify whether to perform clustering
%                       from multiple 'Start' values in parallel, and how
%                       to use random numbers when generating the starting
%                       points. For information on these fields see
%                       PARALLELSTATS.
%                       NOTE: if 'UseParallel' is 'always' and
%                       'UseSubstreams' is 'never', then the length of
%                       Streams must equal the number of processors used.
%                       There are two possibilities. If a MATLAB pool is
%                       open, then Streams is the same length as the size
%                       of the MATLAB pool. If a MATLAB pool is not open,
%                       then Streams must supply a single random number
%                       stream.
%
%   'OnlinePhase' - Flag indicating whether KMEANS should perform an "on-line
%      update" phase in addition to a "batch update" phase.  The on-line phase
%      can be time consuming for large data sets, but guarantees a solution
%      that is a local minimum of the distance criterion, i.e., a partition of
%      the data where moving any single point to a different cluster increases
%      the total sum of distances.  'on' (the default) or 'off'.
%
%   Example:
%
%       X = [randn(20,2)+ones(20,2); randn(20,2)-ones(20,2)];
%       opts = statset('Display','final');
%       [cidx, ctrs] = kmeans(X, 2, 'Distance','city', ...
%                             'Replicates',5, 'Options',opts);
%       plot(X(cidx==1,1),X(cidx==1,2),'r.', ...
%            X(cidx==2,1),X(cidx==2,2),'b.', ctrs(:,1),ctrs(:,2),'kx');
%
%   See also LINKAGE, CLUSTERDATA, SILHOUETTE.

%   KMEANS uses a two-phase iterative algorithm to minimize the sum of
%   point-to-centroid distances, summed over all K clusters.  The first phase
%   uses what the literature often describes as "batch" updates, where each
%   iteration consists of reassigning points to their nearest cluster
%   centroid, all at once, followed by recalculation of cluster centroids.
%   This phase occasionally (especially for small data sets) does not converge
%   to solution that is a local minimum, i.e., a partition of the data where
%   moving any single point to a different cluster increases the total sum of
%   distances.  Thus, the batch phase be thought of as providing a fast but
%   potentially only approximate solution as a starting point for the second
%   phase.  The second phase uses what the literature often describes as
%   "on-line" updates, where points are individually reassigned if doing so
%   will reduce the sum of distances, and cluster centroids are recomputed
%   after each reassignment.  Each iteration during this second phase consists
%   of one pass though all the points.  The on-line phase will converge to a
%   local minimum, although there may be other local minima with lower total
%   sum of distances.  The problem of finding the global minimum can only be
%   solved in general by an exhaustive (or clever, or lucky) choice of
%   starting points, but using several replicates with random starting points
%   typically results in a solution that is a global minimum.
%
% References:
%
%   [1] Seber, G.A.F. (1984) Multivariate Observations, Wiley, New York.
%   [2] Spath, H. (1985) Cluster Dissection and Analysis: Theory, FORTRAN
%       Programs, Examples, translated by J. Goldschmidt, Halsted Press,
%       New York.

%   Copyright 1993-2012 The MathWorks, Inc.
%   $Revision: 1.1.10.8 $  $Date: 2012/05/08 20:43:03 $

if nargin < 2
    error(message('stats:kmeans:TooFewInputs'));
end

[~,wasnan,X] = statremovenan(X);
hadNaNs = any(wasnan);
if hadNaNs
    warning(message('stats:kmeans:MissingDataRemoved'));
end

% n points in p dimensional space
[n, p] = size(X);

pnames = {   'distance'  'start' 'replicates' 'emptyaction' 'onlinephase' 'options' 'maxiter' 'display'};
dflts =  {'sqeuclidean' 'sample'          []         'error'         'on'        []        []        []};
[distance,start,reps,emptyact,online,options,maxit,display] ...
    = internal.stats.parseArgs(pnames, dflts, varargin{:});

distNames = {'sqeuclidean','cityblock','cosine','correlation','hamming'};
distance = internal.stats.getParamVal(distance,distNames,'''Distance''');
switch distance
    case 'cosine'
        Xnorm = sqrt(sum(X.^2, 2));
        if any(min(Xnorm) <= eps(max(Xnorm)))
            error(message('stats:kmeans:ZeroDataForCos'));
        end
        X = X ./ Xnorm(:,ones(1,p));
    case 'correlation'
        X = bsxfun(@minus, X, mean(X,2));
        Xnorm = sqrt(sum(X.^2, 2));
        if any(min(Xnorm) <= eps(max(Xnorm)))
            error(message('stats:kmeans:ConstantDataForCorr'));
        end
        X = X ./ Xnorm(:,ones(1,p));
    case 'hamming'
        if ~all(ismember(X(:),[0 1]))
            error(message('stats:kmeans:NonbinaryDataForHamm'));
        end
end

if ischar(start)
    startNames = {'uniform','sample','cluster'};
    j = find(strncmpi(start,startNames,length(start)));
    if length(j) > 1
        error(message('stats:kmeans:AmbiguousStart', start));
    elseif isempty(j)
        error(message('stats:kmeans:UnknownStart', start));
    elseif isempty(k)
        error(message('stats:kmeans:MissingK'));
    end
    start = startNames{j};
    if strcmp(start, 'uniform')
        if strcmp(distance, 'hamming')
            error(message('stats:kmeans:UniformStartForHamm'));
        end
        Xmins = min(X,[],1);
        Xmaxs = max(X,[],1);
    end
elseif isnumeric(start)
    CC = start;
    start = 'numeric';
    if isempty(k)
        k = size(CC,1);
    elseif k ~= size(CC,1);
        error(message('stats:kmeans:StartBadRowSize'));
    elseif size(CC,2) ~= p
        error(message('stats:kmeans:StartBadColumnSize'));
    end
    if isempty(reps)
        reps = size(CC,3);
    elseif reps ~= size(CC,3);
        error(message('stats:kmeans:StartBadThirdDimSize'));
    end
    
    % Need to center explicit starting points for 'correlation'. (Re)normalization
    % for 'cosine'/'correlation' is done at each iteration.
    if isequal(distance, 'correlation')
          CC = bsxfun(@minus, CC, mean(CC,2));
    end
else
    error(message('stats:kmeans:InvalidStart'));
end

emptyactNames = {'error','drop','singleton'};
emptyact = internal.stats.getParamVal(emptyact,emptyactNames,'''EmptyAction''');

[~,online] = internal.stats.getParamVal(online,{'on','off'},'''OnlinePhase''');
online = (online==1);

% 'maxiter' and 'display' are grandfathered as separate param name/value pairs
if ~isempty(display)
    options = statset(options,'Display',display);
end
if ~isempty(maxit)
    options = statset(options,'MaxIter',maxit);
end

options = statset(statset('kmeans'), options);
display = find(strncmpi(options.Display, {'off','notify','final','iter'},...
    length(options.Display))) - 1;
maxit = options.MaxIter;

if ~(isscalar(k) && isnumeric(k) && isreal(k) && k > 0 && (round(k)==k))
    error(message('stats:kmeans:InvalidK'));
    % elseif k == 1
    % this special case works automatically
elseif n < k
    error(message('stats:kmeans:TooManyClusters'));
end

% Assume one replicate
if isempty(reps)
    reps = 1;
end

emptyErrCnt = 0;

[useParallel, RNGscheme, poolsz] = ...
    internal.stats.parallel.processParallelAndStreamOptions(options,true);

usePool = useParallel && poolsz>0;

% Define the function that will perform one iteration of the
% loop inside smartFor
loopbody = @loopBody;

% Prepare for in-progress
if display > 1 % 'iter' or 'final'
    if usePool
        % If we are running on a matlabpool, each worker will generate
        % a separate periodic report.  Before starting the loop, we
        % seed the matlabpool so that each worker will have an
        % identifying label (eg, index) for its report.
        internal.stats.parallel.distributeToPool( ...
            'workerID', num2cell(1:poolsz) );
        
        % Periodic reports behave differently in parallel than they do
        % in serial computation (which is the baseline).
        % We advise the user of the difference.
        
        if display == 3 % 'iter' only
            warning(message('stats:kmeans:displayParallel2'));
            fprintf('    worker\t  iter\t phase\t     num\t         sum\n' );
        end
    else
        if useParallel
            warning(message('stats:kmeans:displayParallel'));
        end
        if display == 3 % 'iter' only
            fprintf('  iter\t phase\t     num\t         sum\n');
        end
    end
end

% Perform KMEANS replicates on separate workers.
ClusterBest = internal.stats.parallel.smartForReduce(...
    reps, loopbody, useParallel, RNGscheme, 'argmin');

% Extract the best solution
idxbest = ClusterBest{5};
Cbest = ClusterBest{6};
sumDbest = ClusterBest{3};
totsumDbest = ClusterBest{1};
if nargout > 3
    Dbest = ClusterBest{7};
end

if display > 1 % 'final' or 'iter'
    fprintf('%s\n',getString(message('stats:kmeans:FinalSumOfDistances',sprintf('%g',totsumDbest))));
end

if hadNaNs
    idxbest = statinsertnan(wasnan, idxbest);
end

    function cellout = loopBody(rep,S)
        
        if isempty(S)
            S = RandStream.getGlobalStream;
        end
        
        if display > 1 % 'iter'
            if usePool
                dispfmt = '%8d\t%6d\t%6d\t%8d\t%12g\n';
                labindx = internal.stats.parallel.workerGetValue('workerID');
            else
                dispfmt = '%6d\t%6d\t%8d\t%12g\n';
            end
        end
        
        cellout = cell(7,1);  % cellout{1} = total sum of distances
                              % cellout{2} = replicate number
                              % cellout{3} = sum of distance for each cluster
                              % cellout{4} = iteration
                              % cellout{5} = idx;
                              % cellout{6} = Center
                              % cellout{7} = Distance
        
        % Populating total sum of distances to Inf. This is used in the
        % reduce operation if update fails due to empty cluster.
        cellout{1} = Inf;
        cellout{2} = rep;
        
        switch start
            case 'uniform'
                C = Xmins(ones(k,1),:) + rand(S,[k,p]).*(Xmaxs(ones(k,1),:)-Xmins(ones(k,1),:));
                % For 'cosine' and 'correlation', these are uniform inside a subset
                % of the unit hypersphere.  Still need to center them for
                % 'correlation'.  (Re)normalization for 'cosine'/'correlation' is
                % done at each iteration.
                if isequal(distance, 'correlation')
                    C = bsxfun(@minus, C, mean(C,2));
                end
                if isa(X,'single')
                    C = single(C);
                end
            case 'sample'
                C = X(randsample(S,n,k),:);
                if ~isfloat(C)      % X may be logical
                    C = double(C);
                end
            case 'cluster'
                Xsubset = X(randsample(S,n,floor(.1*n)),:);
                [~, C] = kmeans(Xsubset, k, varargin{:}, 'start','sample', 'replicates',1);
            case 'numeric'
                C = CC(:,:,rep);
        end
        
        % Compute the distance from every point to each cluster centroid and the
        % initial assignment of points to clusters
        D = distfun(X, C, distance, 0, rep, reps);
        [d, idx] = min(D, [], 2);
        m = accumarray(idx,1,[k,1]);
        
        try % catch empty cluster errors and move on to next rep
            
            % Begin phase one:  batch reassignments
            converged = batchUpdate();
            
            % Begin phase two:  single reassignments
            if online
                converged = onlineUpdate();
            end
            
            
            if display == 2 % 'final'
                fprintf('%s\n',getString(message('stats:kmeans:IterationsSumOfDistances',rep,iter,sprintf('%g',totsumD) )));
            end
            
            if ~converged
                if reps==1
                    warning(message('stats:kmeans:FailedToConverge', maxit));
                else
                    warning(message('stats:kmeans:FailedToConvergeRep', maxit, rep));
                end
            end
            
            % Calculate cluster-wise sums of distances
            nonempties = find(m>0);
            D(:,nonempties) = distfun(X, C(nonempties,:), distance, iter, rep, reps);
            d = D((idx-1)*n + (1:n)');
            sumD = accumarray(idx,d,[k,1]);
            totsumD = sum(sumD);
            
            % Save the best solution so far
             cellout = {totsumD,rep,sumD,iter,idx,C,D}';
           
            % If an empty cluster error occurred in one of multiple replicates, catch
            % it, warn, and move on to next replicate.  Error only when all replicates
            % fail.  Rethrow an other kind of error.
        catch ME
            if reps == 1 || (~isequal(ME.identifier,'stats:kmeans:EmptyCluster')  && ...
                         ~isequal(ME.identifier,'stats:kmeans:EmptyClusterRep'))
                rethrow(ME);
            else
                emptyErrCnt = emptyErrCnt + 1;
                warning(message('stats:kmeans:EmptyClusterInBatchUpdate', rep, iter));
                if emptyErrCnt == reps
                    error(message('stats:kmeans:EmptyClusterAllReps'));
                end
            end
        end % catch
        
        %------------------------------------------------------------------
        
        function converged = batchUpdate()
            
            % Every point moved, every cluster will need an update
            moved = 1:n;
            changed = 1:k;
            previdx = zeros(n,1);
            prevtotsumD = Inf;
            
            %
            % Begin phase one:  batch reassignments
            %
            
            iter = 0;
            converged = false;
            while true
                iter = iter + 1;
                
                % Calculate the new cluster centroids and counts, and update the
                % distance from every point to those new cluster centroids
                [C(changed,:), m(changed)] = gcentroids(X, idx, changed, distance);
                D(:,changed) = distfun(X, C(changed,:), distance, iter, rep, reps);
                
                % Deal with clusters that have just lost all their members
                empties = changed(m(changed) == 0);
                if ~isempty(empties)
                    if strcmp(emptyact,'error')
                        if reps==1
                            error(message('stats:kmeans:EmptyCluster', iter));
                        else
                            error(message('stats:kmeans:EmptyClusterRep', iter, rep));
                        end
                    end
                    if reps==1
                        warning(message('stats:kmeans:EmptyCluster', iter));
                    else
                        warning(message('stats:kmeans:EmptyClusterRep', iter, rep));
                    end
                    switch emptyact
                        case 'drop'
                            % Remove the empty cluster from any further processing
                            D(:,empties) = NaN;
                            changed = changed(m(changed) > 0);
                        case 'singleton'
                            for i = empties
                                d = D((idx-1)*n + (1:n)'); % use newly updated distances
                                
                                % Find the point furthest away from its current cluster.
                                % Take that point out of its cluster and use it to create
                                % a new singleton cluster to replace the empty one.
                                [~, lonely] = max(d);
                                from = idx(lonely); % taking from this cluster
                                if m(from) < 2
                                    % In the very unusual event that the cluster had only
                                    % one member, pick any other non-singleton point.
                                    from = find(m>1,1,'first');
                                    lonely = find(idx==from,1,'first');
                                end
                                C(i,:) = X(lonely,:);
                                m(i) = 1;
                                idx(lonely) = i;
                                D(:,i) = distfun(X, C(i,:), distance, iter, rep, reps);
                                
                                % Update clusters from which points are taken
                                [C(from,:), m(from)] = gcentroids(X, idx, from, distance);
                                D(:,from) = distfun(X, C(from,:), distance, iter, rep, reps);
                                changed = unique([changed from]);
                            end
                    end
                end
                
                % Compute the total sum of distances for the current configuration.
                totsumD = sum(D((idx-1)*n + (1:n)'));
                % Test for a cycle: if objective is not decreased, back out
                % the last step and move on to the single update phase
                if prevtotsumD <= totsumD
                    idx = previdx;
                    [C(changed,:), m(changed)] = gcentroids(X, idx, changed, distance);
                    iter = iter - 1;
                    break;
                end
                if display > 2 % 'iter'
                    if usePool
                        fprintf(dispfmt,labindx,iter,1,length(moved),totsumD);
                    else
                        fprintf(dispfmt,iter,1,length(moved),totsumD);
                    end
                end
                if iter >= maxit
                    break;
                end
                
                % Determine closest cluster for each point and reassign points to clusters
                previdx = idx;
                prevtotsumD = totsumD;
                [d, nidx] = min(D, [], 2);
                
                % Determine which points moved
                moved = find(nidx ~= previdx);
                if ~isempty(moved)
                    % Resolve ties in favor of not moving
                    moved = moved(D((previdx(moved)-1)*n + moved) > d(moved));
                end
                if isempty(moved)
                    converged = true;
                    break;
                end
                idx(moved) = nidx(moved);
                
                % Find clusters that gained or lost members
                changed = unique([idx(moved); previdx(moved)])';
                
            end % phase one
            
        end % nested function
        
        %------------------------------------------------------------------
        
        function converged = onlineUpdate()
            
            % Initialize some cluster information prior to phase two
            switch distance
                case 'cityblock'
                    Xmid = zeros([k,p,2]);
                    for i = 1:k
                        if m(i) > 0
                            % Separate out sorted coords for points in i'th cluster,
                            % and save values above and below median, component-wise
                            Xsorted = sort(X(idx==i,:),1);
                            nn = floor(.5*m(i));
                            if mod(m(i),2) == 0
                                Xmid(i,:,1:2) = Xsorted([nn, nn+1],:)';
                            elseif m(i) > 1
                                Xmid(i,:,1:2) = Xsorted([nn, nn+2],:)';
                            else
                                Xmid(i,:,1:2) = Xsorted([1, 1],:)';
                            end
                        end
                    end
                case 'hamming'
                    Xsum = zeros(k,p);
                    for i = 1:k
                        if m(i) > 0
                            % Sum coords for points in i'th cluster, component-wise
                            Xsum(i,:) = sum(X(idx==i,:), 1);
                        end
                    end
            end
            
            %
            % Begin phase two:  single reassignments
            %
            changed = find(m' > 0);
            lastmoved = 0;
            nummoved = 0;
            iter1 = iter;
            converged = false;
            Del = NaN(n,k); % reassignment criterion
            while iter < maxit
                % Calculate distances to each cluster from each point, and the
                % potential change in total sum of errors for adding or removing
                % each point from each cluster.  Clusters that have not changed
                % membership need not be updated.
                %
                % Singleton clusters are a special case for the sum of dists
                % calculation.  Removing their only point is never best, so the
                % reassignment criterion had better guarantee that a singleton
                % point will stay in its own cluster.  Happily, we get
                % Del(i,idx(i)) == 0 automatically for them.
                switch distance
                    case 'sqeuclidean'
                        for i = changed
                            mbrs = (idx == i);
                            sgn = 1 - 2*mbrs; % -1 for members, 1 for nonmembers
                            if m(i) == 1
                                sgn(mbrs) = 0; % prevent divide-by-zero for singleton mbrs
                            end
                          Del(:,i) = (m(i) ./ (m(i) + sgn)) .* sum((bsxfun(@minus, X, C(i,:))).^2, 2);
                        end
                    case 'cityblock'
                        for i = changed
                            if mod(m(i),2) == 0 % this will never catch singleton clusters
                                ldist = bsxfun(@minus, Xmid(i,:,1), X);
                                rdist = bsxfun(@minus, X, Xmid(i,:,2));
                                mbrs = (idx == i);
                                sgn = repmat(1-2*mbrs, 1, p); % -1 for members, 1 for nonmembers
                                Del(:,i) = sum(max(0, max(sgn.*rdist, sgn.*ldist)), 2);
                            else
                                Del(:,i) = sum(abs(bsxfun(@minus, X, C(i,:))), 2);
                            end
                        end
                    case {'cosine','correlation'}
                        % The points are normalized, centroids are not, so normalize them
                        normC = sqrt(sum(C.^2, 2));
                        if any(normC < eps(class(normC))) % small relative to unit-length data points
                            if reps==1
                                error(message('stats:kmeans:ZeroCentroid', iter));
                            else
                                error(message('stats:kmeans:ZeroCentroidRep', iter, rep));
                            end
                            
                        end
                        % This can be done without a loop, but the loop saves memory allocations
                        for i = changed
                            XCi = X * C(i,:)';
                            mbrs = (idx == i);
                            sgn = 1 - 2*mbrs; % -1 for members, 1 for nonmembers
                            Del(:,i) = 1 + sgn .*...
                                (m(i).*normC(i) - sqrt((m(i).*normC(i)).^2 + 2.*sgn.*m(i).*XCi + 1));
                        end
                    case 'hamming'
                        for i = changed
                            if mod(m(i),2) == 0 % this will never catch singleton clusters
                                % coords with an unequal number of 0s and 1s have a
                                % different contribution than coords with an equal
                                % number
                                unequal01 = find(2*Xsum(i,:) ~= m(i));
                                numequal01 = p - length(unequal01);
                                mbrs = (idx == i);
                                Di = abs(bsxfun(@minus,X(:,unequal01), C(i,unequal01)));
                                Del(:,i) = (sum(Di, 2) + mbrs*numequal01) / p;
                            else
                                Del(:,i) = sum(abs(bsxfun(@minus,X,C(i,:))), 2) / p;
                            end
                        end
                end
                
                % Determine best possible move, if any, for each point.  Next we
                % will pick one from those that actually did move.
                previdx = idx;
                prevtotsumD = totsumD;
                [minDel, nidx] = min(Del, [], 2);
                moved = find(previdx ~= nidx);
                if ~isempty(moved)
                    % Resolve ties in favor of not moving
                    moved = moved(Del((previdx(moved)-1)*n + moved) > minDel(moved));
                end
                if isempty(moved)
                    % Count an iteration if phase 2 did nothing at all, or if we're
                    % in the middle of a pass through all the points
                    if (iter == iter1) || nummoved > 0
                        iter = iter + 1;
                        if display > 2 % 'iter'
                            if usePool
                                fprintf(dispfmt,labindx,iter,2,length(moved),totsumD);
                            else
                                fprintf(dispfmt,iter,2,length(moved),totsumD);
                            end
                        end
                    end
                    converged = true;
                    break;
                end
                
                % Pick the next move in cyclic order
                moved = mod(min(mod(moved - lastmoved - 1, n) + lastmoved), n) + 1;
                
                % If we've gone once through all the points, that's an iteration
                if moved <= lastmoved
                    iter = iter + 1;
                    if display > 2 % 'iter'
                        if usePool
                            fprintf(dispfmt,labindx,iter,2,length(moved),totsumD);
                        else
                            fprintf(dispfmt,iter,2,length(moved),totsumD);
                        end
                    end
                    if iter >= maxit, break; end
                    nummoved = 0;
                end
                nummoved = nummoved + 1;
                lastmoved = moved;
                
                oidx = idx(moved);
                nidx = nidx(moved);
                totsumD = totsumD + Del(moved,nidx) - Del(moved,oidx);
                
                % Update the cluster index vector, and the old and new cluster
                % counts and centroids
                idx(moved) = nidx;
                m(nidx) = m(nidx) + 1;
                m(oidx) = m(oidx) - 1;
                switch distance
                    case 'sqeuclidean'
                        C(nidx,:) = C(nidx,:) + (X(moved,:) - C(nidx,:)) / m(nidx);
                        C(oidx,:) = C(oidx,:) - (X(moved,:) - C(oidx,:)) / m(oidx);
                    case 'cityblock'
                        for i = [oidx nidx]
                            % Separate out sorted coords for points in each cluster.
                            % New centroid is the coord median, save values above and
                            % below median.  All done component-wise.
                            Xsorted = sort(X(idx==i,:),1);
                            nn = floor(.5*m(i));
                            if mod(m(i),2) == 0
                                C(i,:) = .5 * (Xsorted(nn,:) + Xsorted(nn+1,:));
                                Xmid(i,:,1:2) = Xsorted([nn, nn+1],:)';
                            else
                                C(i,:) = Xsorted(nn+1,:);
                                if m(i) > 1
                                    Xmid(i,:,1:2) = Xsorted([nn, nn+2],:)';
                                else
                                    Xmid(i,:,1:2) = Xsorted([1, 1],:)';
                                end
                            end
                        end
                    case {'cosine','correlation'}
                        C(nidx,:) = C(nidx,:) + (X(moved,:) - C(nidx,:)) / m(nidx);
                        C(oidx,:) = C(oidx,:) - (X(moved,:) - C(oidx,:)) / m(oidx);
                    case 'hamming'
                        % Update summed coords for points in each cluster.  New
                        % centroid is the coord median.  All done component-wise.
                        Xsum(nidx,:) = Xsum(nidx,:) + X(moved,:);
                        Xsum(oidx,:) = Xsum(oidx,:) - X(moved,:);
                        C(nidx,:) = .5*sign(2*Xsum(nidx,:) - m(nidx)) + .5;
                        C(oidx,:) = .5*sign(2*Xsum(oidx,:) - m(oidx)) + .5;
                end
                changed = sort([oidx nidx]);
            end % phase two
            
        end % nested function
        
    end

end % main function

%------------------------------------------------------------------

function D = distfun(X, C, dist, iter,rep, reps)
%DISTFUN Calculate point to cluster centroid distances.
[n,p] = size(X);
D = zeros(n,size(C,1));
nclusts = size(C,1);

switch dist
    case 'sqeuclidean'
        for i = 1:nclusts
            D(:,i) = (X(:,1) - C(i,1)).^2;
            for j = 2:p
                D(:,i) = D(:,i) + (X(:,j) - C(i,j)).^2;
            end
            % D(:,i) = sum((X - C(repmat(i,n,1),:)).^2, 2);
        end
    case 'cityblock'
        for i = 1:nclusts
            D(:,i) = abs(X(:,1) - C(i,1));
            for j = 2:p
                D(:,i) = D(:,i) + abs(X(:,j) - C(i,j));
            end
            % D(:,i) = sum(abs(X - C(repmat(i,n,1),:)), 2);
        end
    case {'cosine','correlation'}
        % The points are normalized, centroids are not, so normalize them
        normC = sqrt(sum(C.^2, 2));
        if any(normC < eps(class(normC))) % small relative to unit-length data points
            if reps==1
                error(message('stats:kmeans:ZeroCentroid', iter));
            else
                error(message('stats:kmeans:ZeroCentroidRep', iter, rep));
            end
            
        end
        
        for i = 1:nclusts
            D(:,i) = max(1 - X * (C(i,:)./normC(i))', 0);
        end
    case 'hamming'
        for i = 1:nclusts
            D(:,i) = abs(X(:,1) - C(i,1));
            for j = 2:p
                D(:,i) = D(:,i) + abs(X(:,j) - C(i,j));
            end
            D(:,i) = D(:,i) / p;
            % D(:,i) = sum(abs(X - C(repmat(i,n,1),:)), 2) / p;
        end
end
end % function

%------------------------------------------------------------------

function [centroids, counts] = gcentroids(X, index, clusts, dist)
%GCENTROIDS Centroids and counts stratified by group.
p = size(X,2);
num = length(clusts);
centroids = NaN(num,p);
counts = zeros(num,1);

for i = 1:num
    members = (index == clusts(i));
    if any(members)
        counts(i) = sum(members);
        switch dist
            case 'sqeuclidean'
                centroids(i,:) = sum(X(members,:),1) / counts(i);
            case 'cityblock'
                % Separate out sorted coords for points in i'th cluster,
                % and use to compute a fast median, component-wise
                Xsorted = sort(X(members,:),1);
                nn = floor(.5*counts(i));
                if mod(counts(i),2) == 0
                    centroids(i,:) = .5 * (Xsorted(nn,:) + Xsorted(nn+1,:));
                else
                    centroids(i,:) = Xsorted(nn+1,:);
                end
            case {'cosine','correlation'}
                centroids(i,:) = sum(X(members,:),1) / counts(i); % unnormalized
            case 'hamming'
                % Compute a fast median for binary data, component-wise
                centroids(i,:) = .5*sign(2*sum(X(members,:), 1) - counts(i)) + .5;
        end
    end
end
end % function



你可能感兴趣的:(Matlab)