- c++读取图片_四、faster-rcnn源码阅读:数据流读取
weixin_39719078
c++读取图片img标签读取本地图片os如何读取图片torchdataloader数据并行
数据读取在faster-rcnn源码里是比较简单的部分,但也是非常重要的部分,不了解数据,就不可能了解算法。另一方面,由于python环境碎片话化,源码调用的库在你的电脑上如果碰巧(其实概率还蛮大,特别是windows下)不能用,完全可以用另外一种等价的方式取代。一、图片读取就是把图片转化成矩阵,等待下一个流程进一步处理。图片读取要注意不是所有都是RGB顺序读取1.cv2(OpenCV-Pytho
- Transformer实战-系列教程13:DETR 算法解读
机器学习杨卓越
Transformer实战transformer深度学习DETR物体检测
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码1、物体检测说到目标检测你能想到什么faster-rcnn系列,开山之作,各种proposal方法YOLO肯定也少不了,都是基于anchor这路子玩的NMS那也一定得用上,输出结果肯定要过滤一下的如果一个目标检测算法,上面这三点都木有,你说神不神
- 目标检测SSD:训练自己的数据集
BigCowPeking
目标检测算法安装SSD
最近一直在搞objectdetection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti,识别速度大概是15fps.最近发现SSD(singleshotmultiboxdetector)这篇论文效果和速度都不错,我自己实验了一下,速度确实比faster-rcnn快不少。下面分两部分来介绍。第一部分介绍SSD的安装,第二部
- YOLO系列
Array902
YOLOpython深度学习
深度学习经典检测方法two-stage(两阶段):Faster-rcnn\Mask-Rcnn系列(两阶段即多了一步预选操作)one-stage(单阶段):YOLO系列(直接处理,不需要对数据进行预选)one-stage:最核心的优势:速度非常快,适合做实时监测任务!但是缺点也是有的,效果通常情况下不会太好!(速度越快效果越差,二者相互有些矛盾)mAP:效果好坏FPS:速度快慢two-stage:速
- 目标检测 Faster-RCNN
石中璇
深度学习
文章目录标题目标检测算法:Faster-RCNNR-CNNRegionProposals候选区域RCNN结构原理RCNN存在的问题用SPP-Net改进(spatialpyramidpoolinglayer空间金字塔池化)FastR-CNNFastR-CNN结构图FastR-CNN的缺陷FasterR-CNN标题目标检测算法:Faster-RCNNR-CNNRegionProposals候选区域原先
- caffe版本Faster-RCNN:py-faster-rcnn-master/lib/datasets/factory.py ->用于集成程序默认提供的数据集
a1103688841
分析:这个代码分两个部分:1)首先往__sets()字典的key中注入名字,往对应的val中注入对应的初始化函数。下次只要在__sets()字典中输入key的名字就可以执行对应的初始化函数。__sets()的具体情况如下:2)get_imdb(name)用于配套__sets()的初始化,输入__sets()中存在key,调用他对应的val进行初始化list_imdbs()用于配套__sets(),
- Multi-adversarial Faster-RCNN with Paradigm Teacher for Unrestricted Object Detection
宇来风满楼
目标检测目标检测人工智能计算机视觉算法深度学习机器学习神经网络
GRLmeans‘gradientreversedlayer’,SRMmeans‘ScaleReduceModule’.DiscriminatorsubmoduleatthemmmthblockisdenotedasDm^mm作者未提供代码
- R-C3D论文详解
ce0b74704937
论文链接:R-C3D:RegionConvolutional3DNetworkforTemporalActivityDetection代码地址(论文提供地址):http://ai.bu.edu/r-c3d/该论文借鉴图像物体检测中的Faster-RCNN的思想,文章采用3D卷积来获取视频的时序信息,然后通过类似Faster-RCNN的rpn层和roi层输出时间维度的boundingbox,也就是视
- 【Digest】YOLO系列:YOLOv1,YOLOv2,YOLOv3,YOLOv4,YOLOv5简介
gikod
YOLO
1.前言论文下载:http://arxiv.org/abs/1506.02640代码下载:https://github.com/pjreddie/darknet核心思想:将整张图片作为网络的输入(类似于Faster-RCNN),直接在输出层对BBox的位置和类别进行回归。目标检测之YOLO算法:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5,YOLObile
- 学习笔记:Pytorch 搭建自己的Faster-RCNN目标检测平台
hongyuyahei
vqa学习笔记pytorch
B站学习视频up主的csdn博客1、什么是FasterR-CNN2、pytorch-gpu环境配置(跳过)3、FasterR-CNN整体结构介绍Faster-RCNN可以采用多种的主干特征提取网络,常用的有VGG,Resnet,Xception等等。Faster-RCNN对输入进来的图片尺寸没有固定,但一般会把输入进来的图片短边固定成600.4、Resnet50-主干特征提取网络介绍具体学习见:R
- MMdetection3.0 报错data[‘category_id‘] = self.cat_ids[label] IndexError: list index out of range
MZYYZT
MMdetectionpython深度学习MMdetection3.0
MMdetection3.0问题报错data[‘category_id’]=self.cat_ids[label]IndexError:listindexoutofrange痛苦,希望各位大佬看到后可以指教一下:问题:在使用MMdetection3.0训练NWPU-VHR-10数据时,使用Yolov3模型可以正常训练测试,但是当使用Faster-rcnn模型训练的时候,一直如下图所示错误。1、按照
- MMdetection3.0 问题
MZYYZT
MMdetectionpython目标检测MMdetection3.0python深度学习目标检测
MMdetection3.0问题希望各位路过的大佬指教一下:问题:1、NWPU-VHR-10有标注的数据一共650张,我将其分为了455张训练集,195张验证集。2、然后使用MMdetection3.0框架中的Faster-rcnn网络进行训练,设置训练参数batch-size=2,num_worker=2。3、那么问题来了:为什么下图中的画圈的地方不是【**/228or227】,也就是datal
- YOLO系列/20230903
lucharaar
YOLO
深度学习经典检测方法1.two-stage(分两阶段):Faster-Rcnn和Mask-Rcnn系列-------检测过程中加了预选框步骤速度通常较慢(5FPS),但是效果通常不错非常实用的通用框架Mask-Rcnn,需要了解2.one-stage(单阶段):YOLO系列------当我们想做检测任务,一个cnn网络直接做一个回归任务就可以,中间不需要加额外的补充最核心的优势:速度非常快,适合做
- 目标检测|实战总结
voice_an
1.实现ssd-keras实时目标检测算法,并制作十张图片的测试集。效果一般。ssd算法是继faster-rcnn与yolo之后的又一力作。来自UNC团队2016年发表在ECCV上。SSD最大的特点就是在较高的准确率下实现较好的检测准确度。并非为两种模型:SSD300(300*300输入图片),SSD500(512*512输入图片)。当然输入图片的尺寸越大,往往会得到更好的检测准确率,但同时也带来
- 第五章 目标检测中K-means聚类生成Anchor box(工具)
小酒馆燃着灯
目标检测深度学习工具目标检测kmeans聚类
基础理论在基于anchor的目标检测算法中,anchor一般都是通过人工设计的。例如,在SSD、Faster-RCNN中,设计了9个不同大小和宽高比的anchor。然而,通过人工设计的anchor存在一个弊端,就是并不能保证它们一定能很好的适合数据集,如果anchor的尺寸和目标的尺寸差异较大,则会影响模型的检测效果。在论文YOLOv2中提到了这个问题,作者建议使用K-means聚类来代替人工设计
- YOLO系列详解(YOLO1-YOLO5)
陈子迩
深度学习学习笔记pythonpandas机器学习
目录前言二、YOLOv1举例说明:三、YOLOv2四、YOLOv3五、YOLOv4框架原理5.4.5余弦模拟退火5.5.2DIoU-NMS六YOLOv5七、YOLOv6前言一、前言YOLO系列是one-stage且是基于深度学习的回归方法,而R-CNN、Fast-RCNN、Faster-RCNN等是two-stage且是基于深度学习的分类方法。YOLO官网:GitHub-pjreddie/dark
- pkl文件的简介(Python中的Pickle)
北岛寒沫
Pythonpython开发语言
文章目录Pickle模块简介Pickle模块的使用最近从Github上下载了一个预训练好的Faster-RCNN模型用于科研任务,突然对该文件的格式,.pkl文件产生了一丝疑惑,便去特意了解了一下该格式的文件的含义,下面与大家共享。Pickle模块简介.pkl是Python中pickle模块的默认文件扩展名。pickle是Python中的一个模块,它允许您序列化和反序列化Python对象结构。“序
- SSD安装及训练自己的数据集
zhang_shuai12
深度学习ssdcaffe
最近一直在搞objectdetection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti,识别速度大概是15fps.最近发现SSD(singleshotmultiboxdetector)这篇论文效果和速度都不错,我自己实验了一下,速度确实比faster-rcnn快不少。下面分两部分来介绍。第一部分介绍SSD的安装,第二部
- 在AI Studio中配置faster-rcnn pytorch环境
ForesterZz
cuda
在AIStudio中配置faster-rcnnpytorch环境AIStudio自带cuda版本faster-rcnn的pytorch版本支持AIStudio自带cuda版本AIStudio目前有两个版本的cuda(cuda9.2和cuda10),不过我从没分配到过cuda10,大部分都是cuda9.2。使用以下语句查看cuda版本。cat/usr/local/cuda/version.txtfa
- 使用mmdetection训练模型--记faster-rcnn不同backbone性能比较
hedgehogbb
工作总结深度学习目标检测pytorch
使用mmdetection训练模型一、安装采用的是直接安装,并未使用在conda中建虚拟环境。主要安装的有mmcv和mmdet,其中mmcv的安装与下载的mmdetction版本有关,参考https://mmdetection.readthedocs.io/zh_CN/v2.18.1/get_started.html#id官网安装依赖教程中的mmdetection版本和mmcv版本的对应关系安装。
- 基于Pytorch的从零开始的目标检测
金戈鐡馬
深度学习pytorch目标检测人工智能深度学习python
引言目标检测是计算机视觉中一个非常流行的任务,在这个任务中,给定一个图像,你预测图像中物体的包围盒(通常是矩形的),并且识别物体的类型。在这个图像中可能有多个对象,而且现在有各种先进的技术和框架来解决这个问题,例如Faster-RCNN和YOLOv3。本文讨论将讨论图像中只有一个感兴趣的对象的情况。这里的重点更多是关于如何读取图像及其边界框、调整大小和正确执行增强,而不是模型本身。目标是很好地掌握
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.78】引入2023年华为诺亚提出Gold-YOLO模型中Gatherand-Distribute
人工智能算法研究院
YOLO算法改进系列YOLO算法
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.79】改进损失函数为VariFocal Loss
人工智能算法研究院
YOLO算法改进系列YOLO算法目标跟踪
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- CV综述OCR任务---目录
慕一Chambers
图像分类CNN深度学习机器学习
CV综述OCR任务---目录图像任务OCR任务图像分类目标检测图像分割图像增强视频任务正文:OCR学习OCR参考资料:参考博客:典型应用常见挑战比赛经典OCR方法单字符识别方法序列识别方法tessernet文字检测模型Part(thinkaboutCV中的目标检测)faster-RCNN/YOLO/SSDCTPN(2016):ConnectionistTextProposalNetworkEAST
- 第五章 目标检测中K-means聚类生成Anchor box(工具)
小酒馆燃着灯
机器学习工具深度学习目标检测kmeans聚类
第一种做法在基于anchor的目标检测算法中,anchor一般都是通过人工设计的。例如,在SSD、Faster-RCNN中,设计了9个不同大小和宽高比的anchor。然而,通过人工设计的anchor存在一个弊端,就是并不能保证它们一定能很好的适合数据集,如果anchor的尺寸和目标的尺寸差异较大,则会影响模型的检测效果。在论文YOLOv2中提到了这个问题,作者建议使用K-means聚类来代替人工设
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.77】引入百度最新提出RT-DETR模型中AIFI模块
人工智能算法研究院
YOLO算法改进系列YOLO算法目标跟踪
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- mmdetection安装与训练
不减到100斤不吃锅包肉
深度学习pytorch深度学习
一、什么是mmdetection商汤科技(2018COCO目标检测挑战赛冠军)和香港中文大学最近开源了一个基于Pytorch实现的深度学习目标检测工具箱mmdetection,支持Faster-RCNN,Mask-RCNN,Fast-RCNN等主流的目标检测框架,后续会加入Cascade-RCNN以及其他一系列目标检测框架。二、mmdetection安装本人安装环境:系统环境:Ubuntu20.0
- 安装yolo,mmlab,等工具时pycocotools报错
zRezin
YOLO深度学习人工智能计算机视觉
安装yolo的时候,因为是白板机,很多依赖都没有安装。安装yolo的依赖时候会报错。其实如果安装其他的视觉框架,例如yolov系列,mmlab,faster-rcnn等只要是用到了coco数据集的预置框架,都需要安装pycocotools。conda环境下依赖安装可能报错,可能是因为环境版本不匹配。需要手动安装报错语句如下ERROR:Couldnotbuildwheelsforpycocotool
- Faster-RCNN and Mask-RCNN框架解析
nice-wyh
pytorch目标检测深度学习机器学习
由于本人记忆力实在太差,每次学完一个框架没过多久就会忘,而且码文能力不行,人又懒,所以看到了其他人写的不错的两篇框架解析的博文,先来记录一下,就当是我写的喽Faster-rcnn详解_fasterr-cnn-CSDN博客MaskR-CNN详解_maskrcnn-CSDN博客
- Pytorch实现Faster-RCNN
*Major*
Pytorch实现Faster−RCNNPytorch实现Faster-RCNNPytorch实现Faster−RCNN基本结构![在这里插入图片描述](https://img-blog.csdnimg.cn/20200614150822116.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。