- 复合Simpson求积算法-C++【可直接复制粘贴/欢迎评论点赞】
月白风清江有声
算法人工智能
背景复合Simpson求积算法是基于Simpson1/3法则的推广。Simpson1/3法则是一种数值积分方法,它通过将积分区间划分为多个小区间,并在每个小区间上采用一个二次多项式来逼近原函数,进而求得积分的近似值。复合Simpson求积算法则是将这种方法应用于整个积分区间,即将整个区间划分为多个小区间,并在每个小区间上分别应用Simpson1/3法则进行积分计算,最后将各小区间的积分结果相加得到
- 数学运用 -- 使用最小二乘与勒让德多项式拟合离散数据
sz66cm
线性代数矩阵机器学习
使用最小二乘与勒让德多项式拟合离散数据1.准备离散数据假设我们有以下离散数据集:xxxyyy0.01.00.50.81.00.51.50.22.0-0.1我们想用勒让德多项式拟合这些数据,并通过最小二乘法找到勒让德多项式的系数。2.勒让德多项式勒让德多项式的前几项为:P0(x)=1P_0(x)=1P0(x)=1P1(x)=xP_1(x)=xP1(x)=xP2(x)=12(3x2−1)P_2(x)=
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- 一个符号求导的小程序
flowesy
随笔实验
这两天写了一个符号求导的程序,没有任何化简,代码质量比较差。以后可以考虑把每个项coefficient*x^index单独提出来,把coefficient和index单独作为未知数x的属性。该程序目前只支持多项式求导。#includeusingnamespacestd;conststaticintbign=10033;enumtokenType{Openbracket=1,CloseBracket
- 01-30
姬汉斯
今天看的是关于文档识别和分类的处理案例。利用多项式贝叶斯公式计算TF-IDF值,以此计算出文档中的词频,文档频率等数据属性,TFIDFVectorizer类用于进行整理,NTLK包进行标注处理,计算文档中各个字符的权重,通过分类器进行分类处理。Sklearn在其中依然有巨大作用,还在熟悉其特性
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- AI大模型探索之路-实战篇9:探究Agent智能数据分析平台的架构与功能
寻道AI小兵
AI大模型Agent探索实践人工智能AIGC语言模型AI编程自然语言处理Agent数据分析
系列篇章AI大模型探索之路-实战篇4:深入DB-GPT数据应用开发框架调研AI大模型探索之路-实战篇5:探索OpenInterpreter开放代码解释器调研AI大模型探索之路-实战篇6:掌握FunctionCalling的详细流程AI大模型探索之路-实战篇7:FunctionCalling技术实战自动生成函数AI大模型探索之路-实战篇8:多轮对话与FunctionCalling技术应用目录系列篇章
- 数学建模-插值算法原理笔记
Faye_C_66
数学建模数学建模
文章目录目的概念分类一般插值多项式拉格朗日插值法分段线性插值分段二次插值牛顿插值法埃尔米特插值原理分段三次埃米尔特插值三次样条插值这里是根据清风数学建模视频课程记录的笔记,我不是清风本人。想系统学习数学建模的可以移步B站搜索相关视频目的比赛中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就可以使用一些方法“模拟产生”一些新的但又比较靠谱的
- 第四讲:拟合算法
云 无 心 以 出 岫
数学建模数学建模算法
与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线)使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)。插值算法中,得到的多项式f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到-个确定的曲线,尽管这条曲线不能经过每一个样本点
- GitHub Copilot的详细介绍
西瓜本瓜@
githubcopilot开发语言
目录主要功能:示例用法:GitHubCopilot的优缺点:优点:缺点:如何使用GitHubCopilot?总结:GitHubCopilot是一种基于人工智能的编程助手,由GitHub和OpenAI联合开发。它利用OpenAI的GPT模型(类似于GPT-4)来帮助开发者更快地编写代码。通过分析你当前的代码、注释、上下文,GitHubCopilot可以为你提供自动补全、代码建议、生成函数和代码块,甚
- 有关区块链的一些数学知识储备
fc&&fl
考研学习
1.集合集合是由不同对象组成的整体(collectionsofobjects)的数学模型,这些对象被称为集合的元素(elements)。整数(Integers)、有理数(Rationalnumbers)、实数(Realnumbers)、复数(Complexnumbers)、矩阵(Matrices)、多项式(Polynomials)、多边形(Polygons)以及其他的很多概念实质上都是集合。常用集
- python奇数平方和_平方和
weixin_39807352
python奇数平方和
平方和误差和最大后验2020-12-2119:32:19多项式曲线拟合问题中的最大后验与最小化正则和平方和误差之间的关系简单证明多项式回归的最大后验等价于最小正则化和平方和误差;主要内容:多项式回归高斯分布贝叶斯定理对数函数计算1.简单回顾一下多项式回归y组合模型方法2020-12-0813:01:57不同的定性预测模型方法或定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系
- PAT1010 一元多项式求导
Nemeorum
算法pat考试java
设计函数求一元多项式的导数。(注:xn(n为整数)的一阶导数为nxn−1。)输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是0,但是表示为00。输入样例:34-5261-20输出样例:123-10160个人题解
- 请编写函数fun,其功能是:计算并输出下列多项式的值,S=(1-1/2)+(1/3-1/4)+…+(1/(2n-1)-1/2n),要求n的值大于1但不大于100
Charlotte_yu
算法c语言
#includedoublefun(intn){doubler=0,x=0,sum=0;doublei;if(n>1&&n<=100){for(i=1;i<=n;i++){r=1/(2*i-1);x=1/(2*i);sum+=(r-x);}}returnsum;}main(){intn;doubles;voidNONO();printf("\nInputn:");scanf("%d",&n);s=
- 高等代数理论基础9:复系数与实系数多项式
溺于恐
复系数与实系数多项式代数基本定理定理:每个次数的复系数多项式在复数域中有一根等价叙述:每个次数的复系数多项式,在复数域上一定有一个一次因式注:由定理可知复数域上所有次数大于1的多项式全是可约的,即不可约多项式只有一次多项式复系数多项式因式分解定理定理:每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积复系数多项式具有标准分解式其中是不同的复数,标准分解式说明每个n次复系数多项式恰有n
- 多项式时间和伪多项式时间
曾悦_3b69
参考自:维基百科伪多项式时间在计算机理论领域中,若一个数值算法的时间复杂度可以表示为输入数值的多项式,则称其时间复杂度为“伪多项式时间时间”,这是由于,的值是的位数的幂,故该算法的时间复杂度实际上应视为输入数值的位数的幂(,为在计算机中存储的位数)。举例在素性测试中,使用较小的整数对被测试数进行试除的算法被认为是一个伪多项式时间算法。对于给定的整数,使用从小的素数2开始,到为止的数对N进行试除,如
- 微信小程序 - 选项卡切换 - 视频播放 - (图解+代码流程)
Envyᥫᩣ
微信小程序音视频小程序视频
目录一、选项卡切换效果图1.选项卡切换.wxml代码2.选项卡切换.wxss代码3.选项卡切换.js代码neirclik函数onLoad函数ctqis函数二、视频播放效果图1.视频播放.wxml代码视频组件1.视频播放.wxss代码3.视频播放.js代码**随机颜色生成函数getRandomColor()****页面初始数据****弹幕相关函数****视频切换函数qieclick(e)****生命
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- 在数据清洗中,如何处理缺失值?
ShiTuanWang
大数据数据挖掘数据分析
在数据清洗中,处理缺失值的有效方法主要有以下几种:1.删除缺失值:这种方法适用于缺失值数量较少或者对分析任务影响较小的情况。通过删除含有缺失值的记录,可以确保分析的数据是完整的。不过,这种方法可能会导致信息的丢失,尤其是当缺失不是随机发生时,删除可能会引入偏差。2.插值法:插值法适用于连续型数据的缺失值填充,它通过已知数据点的信息来估计未知点的值。例如,可以使用线性插值、多项式插值或更复杂的统计模
- 牛客竞赛数据结构专题班树状数组、线段树练习题
Landing_on_Mars
#线段树数据结构算法
牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJG智乃酱的平方数列(线段树,等差数列,多项式)题目描述想必你一定会用线段树维护等差数列吧?让我们来看看它的升级版。请你维护一个长度为5×10^5的数组,一开始数组中每个元素都为0,要求支持以下两个操作:1、区间[l,r]加自然数的平方数组,即al+=1,al+1+=4,al+2+=9,al+3+=16...ar+
- Python lambda(匿名函数)函数总结
hunyxv
python笔记pythonlambda函数
Pythonlambda(匿名函数)函数总结除了def语句之外,Python还提供了一种生成函数对象的表达式形式。由于它与LISP语言中的一个工具很相似,所以就称为lambda。表达式创建一个之后能够调用的函数,但是它返回了一个函数而不是将这个函数赋值给一个变量名,这也是lambda有时候叫做匿名函数的原因。lambda表达式lambda的一般形式是关键字lambda,之后是一个或多个参数,紧跟的
- 【Python】使用高斯一勒让德求积(Gauss-Legendre)积分公式进行数值积分
穿着帆布鞋也能走猫步
课程设计成品python
本设计实现了使用Gauss-Legendre积分公式进行数值积分的功能。它通过计算勒让德多项式的零点和权重,并结合被积函数的取值来进行积分的近似计算。通过调整积分节点数n,可以得到更准确的积分近似值。最后,将计算得到的近似值与精确值进行比较,以评估数值积分的准确性。importnumpyasnpimportmatplotlib.pyplotasplt#定义勒让德多项式deflegendre_pol
- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- LSTM进行字符级文本生成(pytorch实现)
山川而川-R
lstmpytorch人工智能
文章目录基于pytorch的LSTM进行字符集文本生成前言一、数据集二、代码实现1.到入库和LSTM进行模型构建2.数据预处理函数3.训练函数4.预测函数5.文本生成函数6.主函数完整代码总结前言本文介绍了机器学习中深度学习的内容使用pytorch构建LSTM模型进行字符级文本生成任务一、数据集https://download.csdn.net/download/qq_52785473/78428
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 数据结构与算法题目集|7-2 一元多项式的乘法与加法运算 c++满分题解
Pixeler
pta数据结构与算法题目集c++算法开发语言
设计函数分别求两个一元多项式的乘积与和。输入格式:输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式:输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出00。输入样例:434-5261-203520-7431输出样例
- Java-eclipse-基本设置
董铠
Javajavaeclipse
Eclipse和MyEclipse区别:Eclipse免费,MyEclipse收费MyEclipse在web开发提供强大的系统架构平台下载:http://eclipse.org/Eclipse解压就可以直接使用,不用安装。Eclipse不用自己编译,直接运行Eclipse快捷键:输入代码(main)(Syso)(Sca)(for)(if),再按Alt+/就可以自动生成函数ctrl+/用于注释ctr
- 【吴恩达·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)
Yaoyao2024
机器学习线性回归人工智能
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
- 中学数学解题05
opcc
有日子没解题了,一直也没人问题,昨天有个学生问了几道题,我们来看一下。是不是有种高大上的赶脚,英语不好的我先默默地补习下单词,有些单词在数学中的意思还是学生在给我讲题的过程中解释的,然而这位同学中文又不好,于是有那么一点点小障碍,还好都是聪明人。polynomial多项式quotient商,商数remainder余数divide除highestpower最高次幂其他单词就不一一解释了。下面我们来看
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在