Python fminunc 的替代方法

最近闲着没事,想把coursera上斯坦福ML课程里面的练习,用Python来实现一下,一是加深ML的基础,二是熟悉一下numpy,matplotlib,scipy这些库。

在EX2中,优化theta使用了matlab里面的fminunc函数,不知道Python里面如何实现。搜索之后,发现stackflow上有人提到用scipy库里面的minimize函数来替代。我尝试直接调用我的costfunction和grad,程序报错,提示(3,)和(100,1)dim维度不等,gradient vector不对之类的,试了N多次后,终于发现问题何在。。

首先来看看使用np.info(minimize)查看函数的介绍,传入的参数有:

fun : callable
    The objective function to be minimized.

        ``fun(x, *args) -> float``

    where x is an 1-D array with shape (n,) and `args`
    is a tuple of the fixed parameters needed to completely
    specify the function.
x0 : ndarray, shape (n,)
    Initial guess. Array of real elements of size (n,),
    where 'n' is the number of independent variables.
args : tuple, optional
    Extra arguments passed to the objective function and its
    derivatives (`fun`, `jac` and `hess` functions).
method : str or callable, optional
    Type of solver.  Should be one of

        - 'Nelder-Mead' :ref:`(see here) `
        - 'Powell'      :ref:`(see here) `
        - 'CG'          :ref:`(see here) `
        - 'BFGS'        :ref:`(see here) `
        - 'Newton-CG'   :ref:`(see here) `
        - 'L-BFGS-B'    :ref:`(see here) `
        - 'TNC'         :ref:`(see here) `
        - 'COBYLA'      :ref:`(see here) `
        - 'SLSQP'       :ref:`(see here) `
        - 'trust-constr':ref:`(see here) `
        - 'dogleg'      :ref:`(see here) `
        - 'trust-ncg'   :ref:`(see here) `
        - 'trust-exact' :ref:`(see here) `
        - 'trust-krylov' :ref:`(see here) `
        - custom - a callable object (added in version 0.14.0),
          see below for description.

    If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
    depending if the problem has constraints or bounds.
jac : {callable,  '2-point', '3-point', 'cs', bool}, optional
    Method for computing the gradient vector. Only for CG, BFGS,
    Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,
    trust-exact and trust-constr. If it is a callable, it should be a
    function that returns the gradient vector:

        ``jac(x, *args) -> array_like, shape (n,)``

    where x is an array with shape (n,) and `args` is a tuple with
    the fixed parameters. Alternatively, the keywords
    {'2-point', '3-point', 'cs'} select a finite
    difference scheme for numerical estimation of the gradient. Options
    '3-point' and 'cs' are available only to 'trust-constr'.
    If `jac` is a Boolean and is True, `fun` is assumed to return the
    gradient along with the objective function. If False, the gradient
    will be estimated using '2-point' finite difference estimation.

需要注意的是fun关键词参数里面的函数,需要把优化的theta放在第一个位置,X,y,放到后面。并且,theta在传入的时候一定要是一个一维shape(n,)的数组,不然会出错。

然后jac是梯度,这里的有两个地方要注意,第一个是传入的theta依然要是一个一维shape(n,),第二个是返回的梯度也要是一个一维shape(n,)的数组。

总之,关键在于传入的theta一定要是一个1D shape(n,)的,不然就不行。我之前为了方便已经把theta塑造成了一个(n,1)的列向量,导致使用minimize时会报错。所以,学会用help看说明可谓是相当重要啊~

import numpy as np
import pandas as pd
import scipy.optimize as op

def LoadData(filename):
    data=pd.read_csv(filename,header=None)
    data=np.array(data)
    return data

def ReshapeData(data):
    m=np.size(data,0)
    X=data[:,0:2]
    Y=data[:,2]
    Y=Y.reshape((m,1))
    return X,Y

def InitData(X):
    m,n=X.shape
    initial_theta = np.zeros(n + 1)
    VecOnes = np.ones((m, 1))
    X = np.column_stack((VecOnes, X))
    return X,initial_theta

def sigmoid(x):
    z=1/(1+np.exp(-x))
    return z

def costFunction(theta,X,Y):
    m=X.shape[0]
    J = (-np.dot(Y.T, np.log(sigmoid(X.dot(theta)))) - \
         np.dot((1 - Y).T, np.log(1 - sigmoid(X.dot(theta))))) / m
    return J

def gradient(theta,X,Y):
    m,n=X.shape
    theta=theta.reshape((n,1))
    grad=np.dot(X.T,sigmoid(X.dot(theta))-Y)/m
    return grad.flatten()

if __name__=='__main__':
    data = LoadData('ex2data1csv.csv')
    X, Y = ReshapeData(data)
    X, initial_theta = InitData(X)
    result = op.minimize(fun=costFunction, x0=initial_theta, args=(X, Y), method='TNC', jac=gradient)
    print(result)

最后结果如下,符合MATLAB里面用fminunc优化的结果(fminunc:cost:0.203,theta:-25.161,0.206,0.201)

     fun: array([0.2034977])
     jac: array([8.95038682e-09, 8.16149951e-08, 4.74505693e-07])
 message: 'Local minimum reached (|pg| ~= 0)'
    nfev: 36
     nit: 17
  status: 0
 success: True
       x: array([-25.16131858,   0.20623159,   0.20147149])

此外,由于知道cost在0.203左右,所以我用最笨的梯度下降试了一下,由于后面实在是太慢了,所以设置while J>0.21,循环了大概13W次。。可见,使用集成好的优化算法是多么重要。。。还有,在以前的理解中,如果一个学习速率不合适,J会一直发散,但是昨天的实验发现,有的速率开始会发散,后面还是会收敛。

你可能感兴趣的:(机器学习)