- 【机器学习】从零开始,用线性代数解锁智能时代的钥匙!
eclipsercp
工具毕业设计python机器学习线性代数人工智能
【机器学习】从零开始,用线性代数解锁智能时代的钥匙!文章目录【机器学习】从零开始,用线性代数解锁智能时代的钥匙!引言在这个数据驱动的时代,机器学习已经成为解锁智能科技的关键。但你是否曾被复杂的数学公式和算法搞得晕头转向?别担心,这篇文章将带你从零开始,用最直观的方式掌握线性代数——机器学习的核心武器!线性代数:机器学习的基石向量:数据的基本单元Python代码示例:向量操作矩阵:多维数据的集合Py
- 【机器学习】聚类【Ⅰ】基础知识与距离度量
不牌不改
【机器学习】聚类机器学习算法
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。有任何的书写错误、排版错误、概念错误等,希望大家包含指正。由于字数限制,分成五篇博客。【机器学习】聚类【Ⅰ】基础知识与距离度量【机器学习】聚类【Ⅱ】原型聚类经典算法【机器学习】聚类【Ⅲ】高斯混合模型讲解【机器学习】聚类【Ⅳ】高斯混合模型数学推导【机器学习】聚类【Ⅴ】密度聚类与层次聚类聚类1聚类任务在“无
- Web APP 阶段性综述
预测模型的开发与应用研究
APPconstructionwebapp
WebAPP阶段性综述当前,WebAPP主要应用于电脑端,常被用于部署数据分析、机器学习及深度学习等高算力需求的任务。在医学与生物信息学领域,WebAPP扮演着重要角色。在生物信息学领域,诸多工具以WebAPP的形式呈现,相较之下,医学领域的此类应用数量相对较少。在医学和生物信息学的学术论文中,WebAPP是展示研究成果的有效工具,并且还能部署到网络上,服务于实际应用场景。ShinyAPP平台特性
- Python pandas离散化方法优化与应用实例
python慕遥
Python数据分析Pandas数据科学pythonpandas机器学习
大家好,在数据分析中,离散化是将连续数据划分为不同区间的一种重要方法。这种方法可以更好地理解数据分布、简化分析、或在分类建模中对特征进行转换。在Python的Pandas库中,cut和qcut是两个强大的工具,分别用于基于固定区间和基于分位数对数据进行离散化。它们的灵活性和易用性使其在数据处理过程中十分常用。离散化可以将复杂的连续数据转化为更直观的区间,帮助快速发现数据分布规律,并且在机器学习中,
- Pandas数据预处理:处理缺失值 - 插值法
代码艺术巧匠
pandasPython
Pandas数据预处理:处理缺失值-插值法在数据分析和机器学习任务中,处理缺失值是一个常见的挑战。缺失值可能由于多种原因而产生,例如数据采集过程中的错误、设备故障或者用户不完整的输入。为了有效地处理缺失值,插值法是一种常用的技术。在本文中,我们将使用Python中的Pandas库来演示如何使用插值法处理缺失值。首先,我们需要导入Pandas库并加载包含缺失值的数据集。假设我们有一个名为df的数据框
- 气象海洋水文领域Python机器学习及深度学习实践应用能力提升
AAIshangyanxiu
农林生态遥感编程算法统计语言大气科学python机器学习深度学习
Python是功能强大、免费、开源,实现面向对象的编程语言,能够在不同操作系统和平台使用,简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库,还有丰富的第三方库,Python在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能。上述优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为气象、海洋和水文
- 记录一个LLM+API类型的临床预测模型APP(糖尿病Cox预测模型)的过程
预测模型的开发与应用研究
APPconstructionwebapp
记录一个LLM+API类型的临床预测模型APP(糖尿病Cox预测模型)的构建过程LLM代表的是大语言模型,API代表的是机器学习模型,LLM+API是说将机器学习模型以API的形式引入到LLM,让机器学习模型以对话的方式与用户交流而服务于临床实践的APP形式,是区别与streamlit等具有可视化界面的APP的另外一种APP形式,其优点是结合了LLM丰富的知识储备和对用户需求的理解能力,以及机器学
- python训练模型损失值6000多_机器学习中的 7 大损失函数实战总结(附Python演练)...
weixin_39700394
介绍想象一下-你已经在给定的数据集上训练了机器学习模型,并准备好将它交付给客户。但是,你如何确定该模型能够提供最佳结果?是否有指标或技术可以帮助你快速评估数据集上的模型?当然是有的,简而言之,机器学习中损失函数可以解决以上问题。损失函数是我们喜欢使用的机器学习算法的核心。但大多数初学者和爱好者不清楚如何以及在何处使用它们。它们并不难理解,反而可以增强你对机器学习算法的理解。那么,什么是损失函数,你
- 【机器学习实战入门项目】基于机器学习的鸢尾花分类项目
精通代码大仙
数据挖掘python深度学习机器学习分类人工智能大数据数据挖掘算法python
基于机器学习的鸢尾花分类项目介绍:本项目利用机器学习模型对鸢尾花进行分类。鸢尾花数据集是一个著名的机器学习数据集,包含三种类别的花朵:Setosa、Versicolor和Virginica,每种类别由四个特征描述:萼片长度、萼片宽度、花瓣长度和花瓣宽度。什么是机器学习?机器学习是关于从数据中学习预测或提取知识的过程。它是人工智能的一个子领域。机器学习算法基于样本数据(即训练数据)构建模型,并根据训
- 【TVM 教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在ifname=="__main__":代码块中。importosi
- AI Agent:一场智能革命的开始
TechubNews
人工智能
在当今科技日新月异的时代,AI(人工智能)技术正以前所未有的速度改变着我们的生活和工作方式。其中,AIAgent作为AI领域的一个新兴分支,正逐渐展现出其巨大的潜力和价值。本文将深入探讨AIAgent的发展现状、核心优势以及未来的发展方向,带您领略这一前沿技术的无限魅力。一、AIAgent的发展现状:技术突破与广泛应用近年来,随着大数据、云计算和机器学习等技术的飞速发展,AIAgent的技术水平得
- 国产替代 | 星环科技Sophon替代SAS,助力大型国有银行智能化营销
数据挖掘
分布式架构的|国产智能分析工具在银行交易中,20%的头部优质客户会给银行贡献80%的利润,而赢得一个新客户的成本是保留一个老客户的5至6倍。某大型国有银行在面临此类数据挖掘的业务时,使用的是SAS产品。由于SAS是集中式的,对单台服务器要求太高,算力无法支撑需求,且无法支持可视化的机器学习,对于业务人员来说使用门槛过高。在经过产品选型后,决定采用星环科技的智能分析工具Sophon替换原有SAS,用
- 交叉熵损失与二元交叉熵损失:区别、联系及实现细节
专业发呆业余科研
深度模型底层原理人工智能深度学习python
在机器学习和深度学习中,交叉熵损失(Cross-EntropyLoss)和二元交叉熵损失(BinaryCross-EntropyLoss)是两种常用的损失函数,它们在分类任务中发挥着重要作用。本文将详细介绍这两种损失函数的区别和联系,并通过具体的代码示例来说明它们的实现细节。交叉熵损失(Cross-EntropyLoss)常用于多类分类问题,即每个样本只能属于一个类别,但总类别数量较多。例如,在手
- KDD 2024 | 美团技术团队精选论文解读 & 论文分享会预告
美团机器学习深度学习
ACMSIGKDD(KnowledgeDiscoveryandDataMining,简称KDD)是数据挖掘领域的国际顶级会议。KDDCup比赛是由SIGKDD主办的数据挖掘研究领域的国际顶级赛事,从1997年开始,每年举办一次,是目前数据挖掘领域最有影响力的赛事。本文精选了美团技术团队被KDD2024收录的5篇长文进行解读,覆盖了用户意图感知、机器学习&运筹优化、在线控制实验、联合广告模型、实时调
- llama.cpp部署
法号:行颠
机器学习机器学习
llama.cpp介绍部署介绍大模型的研究分为训练和推理两个部分:训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化;推理结果最优化的过程;训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp主要解决的是推理过程中的性能问题。主要有两点优化:llama.cpp使用的是C语言写的机器学习张量库ggmlllama.cpp提供了模型量化的工具计算类
- Kubeflow:云原生机器学习工作流自动化开源框架详解
gs80140
AI基础知识科谱人工智能Kubeflow
Kubeflow是一个开源的机器学习(ML)工作流自动化平台,旨在将机器学习工作流部署到Kubernetes之上,实现从实验到生产的一站式解决方案。它提供了针对容器化机器学习任务的工具链,能够自动化地管理、部署和监控模型的整个生命周期。Kubeflow的核心组件Notebooks(交互式开发环境)支持JupyterNotebooks,通过Kubernetes集群进行计算资源的扩展和管理。Pipel
- 【机器学习:三十一、推荐系统:从基础到应用】
KeyPan
机器学习机器学习人工智能决策树算法深度学习
1.推荐系统概述推荐系统是一种根据用户的兴趣和偏好,为用户提供个性化建议的技术,广泛应用于电子商务、流媒体平台和社交媒体等领域。通过分析用户行为数据,推荐系统可以帮助用户发现他们感兴趣的内容,同时提升平台的用户体验和商业收益。定义与作用推荐系统是一种数据过滤技术,旨在从海量数据中筛选出用户可能感兴趣的信息。它不仅能提升用户的满意度,还能增加平台的转化率和黏性。分类推荐系统主要分为以下三类:基于内容
- 【机器学习:三十、异常检测:原理与实践】
KeyPan
机器学习机器学习人工智能深度学习pytorch神经网络
1.异常检测概述异常检测(AnomalyDetection)是一种用于识别数据中异常模式或异常点的技术,旨在发现与大部分数据行为不同的样本。它在工业监控、网络安全、金融欺诈检测等领域具有广泛应用。异常检测的目标是找到那些偏离正常行为的数据点,这些数据点可能代表错误、故障、攻击或其他需要特别关注的情况。核心概念异常通常分为以下三种类型:点异常:单个数据点显著偏离正常分布(例如,银行交易中突然的巨额消
- 【机器学习:二十九、K-means算法:原理与应用】
KeyPan
机器学习机器学习算法kmeans人工智能神经网络深度学习数据挖掘
1.K-means概述K-means是一种经典的无监督学习算法,广泛应用于数据聚类任务。其核心思想是将数据集划分为kkk个簇,使得每个簇内的样本尽可能相似,同时不同簇之间尽可能不同。K-means的简单性和高效性使其在模式识别、图像处理、市场分析等领域具有广泛应用。核心思想基于欧几里得距离度量数据点之间的相似性。不断优化簇中心位置,最小化簇内样本与其中心点之间的总距离(即误差平方和,SSE)。适用
- 人工智能下的MASS服务架构
从零开始学习人工智能
人工智能架构
人工智能下的MASS服务架构1.MaaS(ModelasaService)概述MaaS(ModelasaService,模型即服务)是一种新型的人工智能服务模式,通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。2.MaaS的起源与概念MaaS的概念最早由美国数据科学家DJ·帕蒂尔在2012年提出,即“将机器学习算法打包成可重复使用的服务,使企
- 【机器学习】—时序数据分析:机器学习与深度学习在预测、金融、气象等领域的应用
云边有个稻草人
热门文章机器学习数据分析深度学习笔记
云边有个稻草人-CSDN博客目录引言1.时序数据分析基础1.1时序数据的特点1.2时序数据分析的常见方法2.深度学习与时序数据分析2.1深度学习在时序数据分析中的应用2.1.1LSTM(长短期记忆网络)2.2深度学习在金融市场预测中的应用2.2.1股票市场预测2.3深度学习在设备故障检测中的应用3.强化学习与时序数据分析3.1强化学习的基本概念3.2强化学习在金融市场中的应用3.3强化学习在设备故
- 【机器学习】主动学习-增加标签的操作方法-样本池采样(Pool-Based Sampling)
IT古董
机器学习机器学习学习人工智能
Pool-BasedSamplingPool-basedsampling是一种主动学习(ActiveLearning)方法,与流式选择性采样不同,它假设有一个预先定义的未标注样本池,算法从中选择最有价值的样本进行标注,以提升模型的性能。这种方法广泛应用于需要人工标注的场景,例如文本分类、图像识别等。核心思想预先准备一个未标注数据池(UnlabeledDataPool)。使用初始标注数据训练一个模型
- 【机器学习:二十、拆分原始训练集】
KeyPan
机器学习机器学习人工智能深度学习pytorch神经网络
1.如何改进模型模型的改进需求在机器学习任务中,模型性能的提升通常受限于训练数据、模型架构、优化方法及超参数设置等。模型改进的目标是在测试数据上表现更优,避免过拟合或欠拟合。常见的改进方向增大训练数据集:通过数据增强或获取更多样本提高模型泛化能力。改进模型结构:例如增加网络层数、调整神经元数目或选择更适合任务的架构。优化损失函数:根据任务特点选择合适的损失函数,例如交叉熵损失或均方误差。调整超参数
- 【机器学习】---神经架构搜索(NAS)
Undoom
机器学习Python机器学习架构人工智能python
这里写目录标题引言1.什么是神经架构搜索(NAS)1.1为什么需要NAS?2.NAS的三大组件2.1搜索空间搜索空间设计的考虑因素:2.2搜索策略2.3性能估计3.NAS的主要方法3.1基于强化学习的NAS3.2基于进化算法的NAS3.3基于梯度的NAS4.NAS的应用5.实现一个简单的NAS框架6.总结引言随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方
- 机器学习模型调优指南
闵少搞AI
人工智能机器学习人工智能
机器学习模型调优指南机器学习模型参数调优的作用在于优化模型的性能,使其能够在给定任务上更好地泛化和预测。通过合理调整模型的超参数,能够提高模型的准确性、降低过拟合或欠拟合的风险、加快训练过程等。具体来说,机器学习模型参数调优的作用可以从以下几个方面来理解:1.提高模型的预测性能通过调优超参数,可以使模型更适应数据的特征,从而提高其在未知数据上的预测性能。超参数通常会影响模型的拟合能力和泛化能力。例
- Java 大视界 -- Java 开发 Spark 应用:RDD 操作与数据转换
一只蜗牛儿
javaspark开发语言
ApacheSpark是一个强大的分布式计算框架,提供了高效的数据处理能力,广泛应用于大数据分析与机器学习。Spark提供了多种高级API,支持批处理和流处理。Spark提供了两种主要的数据抽象:RDD(弹性分布式数据集)和DataFrame。本文将重点介绍如何使用Java开发Spark应用,并深入探讨RDD的操作与数据转换。一、Spark环境搭建首先,确保您的环境中安装了Java和Spark。您
- 小白也能懂的 Python 入门指南(1)——Python 的前世今生
荆州克莱
面试题汇总与解析springcloudspringbootspring技术css3
Lifeisshort.YouneedPython.——BruceEckel上边这句话是Python社区的名言,翻译过来就是“人生苦短,我用Python”,由此可见,Python在很多人心中已成为最中意的编程语言。在人工智能、机器学习日趋火热的时代,Python又赶上了一波AI的热潮,即使你没系统的学习过它,相信你也一定听说过吧,如果你也对Python产生了浓厚的兴趣,跟我一起来了解下它的前世今生
- AI大模型
荆州克莱
面试题汇总与解析技术css3springcloudspringbootspring
系列简书文章目录https://www.jianshu.com/p/d47d5cdc8a3e本篇目录AI大模型什么是AI大模型AI大模型,通常指的是在人工智能领域中,特别是机器学习和深度学习范畴内,具有巨大参数量和复杂结构的模型。这些模型通过使用大规模数据集和先进的计算硬件进行训练,能够学习到数据中的复杂模式和特征,从而在多种任务上展现出卓越的性能。特点包括:参数量大:AI大模型的参数数量往往达到
- 深度学习:从基础到实践(上、下册)(安德鲁·格拉斯纳)
fyjgfyjfg
深度学习人工智能
(pdf):python33+(0m深度学习概述:深度学习是机器学习的一个分支,它试图通过使用深层神经网络来模拟人脑的学习过程。随机性与基础统计学:在深度学习中,随机性起着重要作用,了解基础统计学有助于更好地理解深度学习中的随机过程和不确定性。训练与测试:深度学习模型的训练过程包括使用训练数据来优化模型参数,而测试过程则使用测试数据来评估模型的性能。过拟合与欠拟合:过拟合是指模型在训练数据上表现过
- 《量子计算对人工智能发展的深远影响》
cc++人工智能深度学习
在科技发展的浪潮中,量子计算与人工智能无疑是两颗璀璨的明星,二者的融合正引领着一场深刻的科技变革.量子计算的独特之处在于其利用量子比特的叠加和纠缠特性,能够实现并行计算,从而在处理复杂问题时展现出超越传统计算的巨大潜力.这种强大的计算能力为人工智能的发展带来了诸多积极影响。加速机器学习训练机器学习,尤其是深度学习,通常需要处理海量数据和复杂的模型训练,耗时极长。量子计算的并行性可使训练过程大幅加速
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D