- 探索多任务学习的新维度:Cross-stitch Networks
计蕴斯Lowell
探索多任务学习的新维度:Cross-stitchNetworksCross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Networks-for-Multi-t
- 【推荐系统】多任务学习之ESMM模型
山顶夕景
推荐算法深度学习推荐算法深度学习
学习总结ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效果。ESMM解决了真实场景中CVR中的SSB和DS问题。CVR(Conversionrate)转化率:衡量CPA广告效果的指标,用户点击广告到成为一个有效的激活(如注册额或者成为付费用户)的转化率,所
- AIGC 与 Whisper:推动语音技术进步
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCwhisperai
AIGC与Whisper:推动语音技术进步关键词:AIGC(生成式人工智能)、Whisper、语音识别、多模态交互、大语言模型、语音合成、多任务学习摘要:本文深度解析生成式人工智能(AIGC)与OpenAI开源的Whisper语音识别系统如何协同推动语音技术进步。通过剖析AIGC的生成能力与Whisper的多语言、多任务处理优势,结合技术原理、算法细节、实战案例与应用场景,揭示两者在语音理解、合成
- 多任务学习概述+Vision Transformer+多模态
passion_up
科研Python相关学习
MTL多任务:多任务学习(MTL,multi-tasklearning)最早可以追溯到1997年的一篇文章,它描述的是一种学习范式——多个任务的数据一起来学习,学习的效果有可能要比每个任务单独学习的结果要好。本质上是利用多个任务的共享信息来提高在所有任务上的泛化性。多任务的核心优势在于通过不同任务的网络参数共享,实现1+1>2的提升。为什么需要MTL?多任务学习能发挥任务之间的关系,同时学习多个模
- 前沿论文汇总(机器学习/深度学习/大模型/搜广推/自然语言处理)
小天才才
一起看paper学AI机器学习深度学习自然语言处理人工智能
文章目录1前言2大模型/自然语言处理2.1FreeAL:在大模型时代实现无需人工的主动学习2.2COLD:中文攻击性语言检测基准2.3将词汇的对比信息融入词嵌入以实现反义词-同义词区分3搜索/推荐/营销3.1PLE:一种面向个性化推荐的新型多任务学习模型3.2MMoE:多任务学习中的任务关系建模4机器学习4.15深度学习5.11前言 本篇博客主要总结一下博主看过的人工智能领域的一些前沿论文,期待
- 多目标建模总结
zhiyong_will
深度学习DeepLearning算法人工智能
1.概述在推荐系统中,通常有多个业务目标需要同时优化,常见的指标包括点击率CTR、转化率CVR、GMV、浏览深度和品类丰富度等。为了能平衡最终的多个目标,需要对多个目标建模,多目标建模的常用方法主要可以分为:多模型的融合多任务学习底层共享表示的优化任务序列依赖关系建模多模型的融合是根据不同的指标训练不同的模型,最终对多个模型的结果做融合;多任务学习是目前处理多目标建模使用较多的方法,相较于多模型的
- 使用 TensorFlow 实现自定义训练循环(Custom Training Loop)
2501_91537435
人工智能tensorflow人工智能python
使用TensorFlow实现自定义训练循环(CustomTrainingLoop)默认的model.fit()已足够应对大多数任务,但在一些复杂场景下,如多任务学习、自定义损失函数、梯度裁剪等,我们就需要更细粒度的控制——这正是自定义训练循环的用武之地。✨自定义训练循环的核心优势更灵活的控制训练流程支持复杂的模型结构与损失函数可调试性更强(便于插入打印、日志记录等)适合研究性、创新性项目主要组成结
- MLP多层感知机 学习笔记
AI算法网奇
深度学习宝典mlp多层感知机
目录多层感知机(MLP)的优点和缺点:pytorch实现mlpcvpr2022的mobileformer中用到了mlp多层感知机,就来学习一下多层感知机(MLP)的优点和缺点:优点:非线性建模:MLP通过引入非线性激活函数,能够更好地适应和捕捉数据中的复杂关系。适用性广泛:由于其灵活性,MLP可以用于各种任务,包括分类、回归和其他机器学习任务。多任务学习:MLP可以被轻松地调整以处理多个输出任务,
- 【神经网络与深度学习】端到端方法和多任务学习
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能
引言端到端方法和多任务学习是机器学习和深度学习领域中的两种重要技术,它们各自适用于不同的应用场景,并在模型设计、数据要求和训练过程等方面有着显著区别。端到端方法通过直接将输入数据映射到输出结果,从而简化了处理流程;而多任务学习则通过共享特征提升模型的性能及其对新任务的泛化能力。本文将对两种方法的定义、结构及应用场景进行简要分析,以帮助读者更好地理解和选择适合的技术。对比端到端方法和多任务学习是机器
- 人工智能丨DeepSeek、文心一言、Kimi、豆包、可灵……谁才是你的最佳AI助手?
霍格沃兹测试开发学社测试人社区
人工智能文心一言软件测试测试开发deepseek
从技术层面对比和分析多个AI平台,DeepSeek、文心一言、可灵、即梦、豆包、Kimi等AI工具,总结了以下几个方面:1.模型架构与算法DeepSeek:可能基于Transformer架构,注重深度学习和多任务学习能力,适合复杂场景下的数据分析和推理任务。文心一言:基于百度的ERNIE系列模型,强调对中文语言的理解和生成能力,尤其在中文语境、成语、文化背景的处理上表现突出。可灵、即梦、豆包:这些
- 【人工智能的数学基础】寻找多目标优化问题的帕累托最优解
AI天才研究院
自然语言处理人工智能语言模型python开发语言
文章目录1.建模多目标优化问题2.求解多目标优化问题⚪无约束的梯度下降⚪带约束的梯度下降3.优化求解过程⚪梯度内积⚪共享编码4.主次型多目标优化⚪主次型多目标优化的应用寻找多目标优化问题的帕累托最优解.paper:Multi-TaskLearningasMulti-ObjectiveOptimization多目标优化是指同时优化多个相关任务的目标,多任务学习是一个典型的多目标优化问题,其总目标函数
- 搜广推校招面经八十一
Y1nhl
搜广推面经开发语言机器学习人工智能深度学习推荐算法搜索算法pytorch
OPPO搜广推一面面经一、介绍一下PLE模型在多任务学习(Multi-TaskLearning,MTL)中,多个任务共享部分模型结构,以提升整体效果。然而,不同任务间存在任务冲突(TaskConflict)问题,即不同任务对参数的优化方向不一致,导致性能下降。论文:Tang,Hongyan,etal.“ProgressiveLayeredExtraction(PLE):ANovelMulti-Ta
- 一段式端到端自动驾驶:UniAD:Planning-oriented Autonomous Driving
机械心
端到端自动驾驶自动驾驶人工智能机器学习一段式端到端
论文地址:https://arxiv.org/pdf/2212.10156代码地址:https://github.com/OpenDriveLab/UniAD1.摘要现代自动驾驶系统通常由一系列按顺序执行的模块任务构成,例如感知、预测和规划。为了完成多种任务并实现高级别的智能化,当前的方法要么为每个任务部署独立模型,要么采用带有多个任务头的多任务学习范式。然而,这些方法可能面临误差累积或任务协调不
- 思维与算法共舞:AIGC语言模型的艺术与科学
云边有个稻草人
热门文章算法开发语言什么是语言模型?多任务学习与多模态生成客户服务与聊天机器人自适应生成与定制化文本预训练与微调
云边有个稻草人-个人主页热门文章_云边有个稻草人的博客-本篇文章所属专栏~目录引言:AIGC与文本生成概述一、AIGC基础:语言模型的基本原理1.什么是语言模型?2.预训练与微调二、AIGC的应用领域:文本生成的具体应用1.内容创作2.客户服务与聊天机器人3.自动摘要4.翻译与语言转换三、前沿突破:AIGC文本生成技术的最新进展与未来方向1.多任务学习与多模态生成2.生成对抗网络(GANs)与文本
- 微调中的多任务学习
CarlowZJ
AI开发学习多任务学习
一、概念讲解1.什么是多任务学习?多任务学习(Multi-TaskLearning,MTL)是一种机器学习方法,它同时处理多个相关任务,共享模型的某些部分,从而提高学习效率和性能。在微调中,多任务学习可以通过同时优化多个任务的目标函数,使模型在多个任务上表现更优。2.多任务学习的优势知识共享:不同任务之间共享模型的某些部分,从而提高模型的泛化能力。减少过拟合:通过同时处理多个任务,减少模型在单一任
- 深度学习 Deep Learning 第15章 表示学习
odoo中国
人工智能深度学习学习人工智能表示学习
深度学习DeepLearning第15章表示学习内容概要本章探讨了表示学习的核心概念及其在深度学习中的重要性,重点分析了无监督预训练(尤其是贪婪逐层预训练)如何通过共享表征提升模型性能,并讨论了其在多任务学习、跨模态处理和小样本场景中的应用价值与理论依据。主要内容表示学习的基本概念表示学习通过将数据映射到不同的表示空间,使得某些任务(如分类)变得更加容易。一个好的表示应该在保留输入信息的同时,具有
- 在Mac M1/M2芯片上完美安装DeepCTR库:避坑指南与实战验证
ku_code_ku
机器学习macos推荐算法推荐系统
让推荐算法在AppleSilicon上全速运行概述作为推荐系统领域的最经常用的明星库,DeepCTR集成了CTR预估、多任务学习等前沿模型实现。但在AppleSilicon架构的Mac设备上,安装过程常因ARM架构适配、依赖库版本冲突等问题受阻。本文通过20+次环境搭建实测,总结出最稳定的安装方案。关键版本说明(2024年验证)组件推荐版本注意事项Python3.10.x向下兼容至3.7,但3.1
- 搜广推校招面经五十三
Y1nhl
搜广推面经python机器学习人工智能推荐算法搜索算法算法
小红书推荐算法一、ESMM(EntireSpaceMulti-TaskModel)ESMM(EntireSpaceMulti-TaskModel)是一种用于解决推荐系统中多任务学习问题的模型。它由阿里巴巴团队提出,主要用于处理点击率(CTR)和转化率(CVR)的联合预测问题。1.1.背景在推荐系统中,CTR和CVR是两个重要的指标:CTR(Click-ThroughRate):用户点击广告的概率。
- Ai时代初期全球不同纬度的层级辐射现象
龙胥伯
人工智能
基于最新研究成果与行业动态,AI时代的"层级辐射"现象可被科学解构为以下六大维度,结合技术演进、产业实践和社会影响进行系统性分析:一、技术能力的层级跃迁模型效率革命DeepSeek研发的R1-Zero模型通过动态架构设计,将样本利用率提升40%以上,训练周期大幅缩短。这种技术突破推动AI从实验室走向规模化应用,在智能制造、生物医药等领域催生新生态。大语言模型的训练方式(预训练→多任务学习→强化学习
- python 使用microsoft-Florence-2-base进行图片描述生成
哦里 哦里哦里给
AI大语言模型实战pythonmicrosoft开发语言
目录一、Florence-2简介二、代码实践三、多语言模型一、Florence-2简介Florence-2是一个先进的视觉基础模型,采用基于提示(prompt)的方式,处理广泛的视觉和视觉-语言任务。Florence-2能够解析简单的文本提示,执行如图像描述、物体检测和分割等任务。该模型利用FLD-5B数据集,该数据集包含54亿个注释,涵盖1.26亿张图像,用于掌握多任务学习。模型的序列到序列架构
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 蓝耘服务器与DeepSeek的结合:引领智能化时代的新突破
Lethehong
热点时事服务器运维deepseekpython
嗨,我是Lethehong!立志在坚不欲说,成功在久不在速欢迎关注:点赞⬆️留言收藏欢迎使用:小智初学计算机网页AI目录蓝耘服务器与DeepSeek的结合:引领智能化时代的新突破一、蓝耘服务器的技术优势1、高性能计算能力2、可扩展性与高效存储3、绿色节能设计二、DeepSeek:智能算法的引擎1、高效的深度学习训练与推理2、自适应学习与迁移学习3、多任务学习三、蓝耘服务器与DeepSeek结合的优
- 运用python进行多任务学习过程中,手动调整权重时,如何选择项目并确定合适的权重值?
大懒猫软件
python学习pytorch重构
在手动调整多任务学习中不同任务的损失权重时,确定合适的权重值是一个需要细致考虑的问题。以下是一些基于最新研究和实践的方法和策略:第一部分:手动调整权重确定合适的权重值1.基于任务的重要性方法:根据任务的重要性手动分配权重。例如,如果一个任务对最终性能的影响更大,可以给予更高的权重。示例:在文本纠错任务中,检测错别字的任务可能比纠正错别字的任务更重要,因此可以给予检测任务更高的权重。2.基于损失值的
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- Time-LLM :超越了现有时间序列预测模型的学习器
福安德信息科技
AI预测大模型学习人工智能python大模型时序预测
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- 【论文笔记】Multi-Task Learning as a Bargaining Game
xhyu61
机器学习学习笔记论文笔记论文阅读人工智能深度学习
Abstract本文将多任务学习中的梯度组合步骤视为一种讨价还价式博弈(bargaininggame),通过游戏,各个任务协商出共识梯度更新方向。在一定条件下,这种问题具有唯一解(NashBargainingSolution),可以作为多任务学习中的一种原则方法。本文提出Nash-MTL,推导了其收敛性的理论保证。1Introduction大部分MTL优化算法遵循一个通用方案。计算所有任务的梯度g
- 百度Ernie大模型是什么?
会飞的岛格酱
AIGCAIGC百度人工智能
百度的Ernie模型(EnhancedRepresentationthroughkNowledgeIntegration)是一个基于Transformer架构的预训练语言模型。它由百度研发,旨在通过整合大规模语料和知识图谱来增强模型的语言理解和生成能力。它通过整合大规模语料和知识图谱,采用多任务学习和分层预训练策略,在多个自然语言处理任务上取得了显著的性能提升。Ernie模型的不断发展和优化,使其
- 梯度提升树系列9——GBDT在多任务学习中的应用
theskylife
数据挖掘学习数据挖掘机器学习python人工智能
目录写在开头1.多任务学习的基础知识1.1多任务学习的概念和优势1.1.1概念1.1.2优势1.2GBDT在多任务学习中的角色1.2.1GBDT的基本原理1.2.2GBDT在多任务学习中的应用2.实际应用案例和最佳实践2.1如何设计多任务学习模型2.2成功案例分享2.2.1推荐系统2.2.2金融风控2.2.3自然语言处理(NLP)3.挑战与解决方案3.1面临的技术挑战和解决策略3.1.1挑战1:任
- 【论文精读】GPT2
None-D
文本生成gpt深度学习人工智能nlp自然语言处理语言模型
摘要在单一领域数据集上训练单一任务的模型是当前系统普遍缺乏泛化能力的主要原因,要想使用当前的架构构建出稳健的系统,可能需要多任务学习。但多任务需要多数据集,而继续扩大数据集和目标设计的规模是个难以处理的问题,所以只能采取多任务学习的其他框架。目前在语言任务上表现最佳的多任务学习系统,利用了预训练和监督微调的结合,通用的预训练系统可以在微调后在多个任务上表现良好,但微调仍需要监督数据。故本文做出证明
- 周记:2019第26周(6.24-6.30)
孙文辉已被占用
1工作:主要是写文档,一个产品说明书,2个专利交底书2学习:《DeepLearning》7/20(chapters)看完第7章(RegularizationforDeepLearning),这章和下一章讲的优化方法应该是深度学习最重要的理论基础了,好多面试题都会问到。记录一下各种降低模型错误率的方法,包括添加正则化项,数据集扩增,多任务学习,earlystoping,dropout,稀疏表示。理论
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后