- zobovision随谈H.265/HEVC编码FPGA实现(一)
zobovision
视频图像编解码FPGAIPfpga开发视频编解码
zobovision随谈H.265/HEVC编码FPGA实现(一)H.265/HEVC出来已有10年,但市场应用难言巅峰,正如古董级的H.264现在仍然大行其道,H.265的全面应用仍有待市场发酵,至少在硬件产品端应用,值得期待。一来H.265相对H.264而言,压缩技术确实要先进不少,不管是理论上还是实际效果方面;二是H.265相对后来者H.266/VVC等而言,实用性更强,性价比更高,产品端的
- 【视频编码\VVC】变换编码基础知识及标准设计相关参数
鴒凰
视频编码音视频视频编解码视频编码h.266VVC笔记
变化编码的基础知识定义:变换编码是将以空间域像素形式描述的图像转换至变换域,以变换系数的形式加以表示。大部分图像都包含较多平坦区域和内容变化缓慢的区域,使得图像能量在空间域的分散转换为变换域的相对集中分布,从而达到空间去冗余的目的。变换概述选用DCT变换的原因:DCT形式与输入信号无关并且存在快速实现算法,并且性能接近K-L变换。H.264第一次使用了整数DCTH.265沿用了整数DCT,进行了不
- 视频编码结构
一箭辰空
音视频
VVCVVC标准对应的参考软件平台是VTM(VVCTestModel)两个基本目标1.高压缩性能,定义一套视频编码技术,其压缩性能要远优于以往的同类标准。2.宽应用领域,能够有效地用于比先前标准更广阔的范围。编码过程图像分块、预测、变换、量化、熵编码、环路滤波1.图像分块如图1所示,VVC在编码原理和基本结构方面没有突破,仍沿用从H.261就开始的基于块的混合视频编码框架,即预测加变换的分块编码方
- H266/VVC多样化视频编码工具概述
DogDaoDao
H266(VVC)标准H266VVC全景视频编码视频编解码屏幕内容编码
全景视频编码全景视频:具有360度全包围视角的球面视频。全景视频编码:包括H266在内的视频编码算法都是以平面视频为对象的,为了采用传统的视频编码编码算法,全景视频需要转换为平面视频,其中经纬图等角映射(ERP)、立方体映射(CMP)是常用的格式。水平环绕运动补偿:普通平面视频编码算法的运动补偿中,当运动矢量指向参考图像边界区域外的像素时,会对参考图像边界进行填充以获取参考像素值,填充方法是用距离
- H266/VVC率失真优化与速率控制概述
DogDaoDao
H266(VVC)标准H266VVC率失真视频编解码实时音视频拉格朗日
率失真优化技术率失真优化:视频编码的主要目的是在保证一定视频质量的条件下尽量降低视频的编码比特率,或者在一定编码比特率限制条件下尽量地减小编码失真。在固定的编码框架下,为了应对不同的视频内容,往往有多种候选的编码方式,编码器的一个主要工作就是在某种策略选择最优的编码参数,以实现最优的编码性能。基于率失真理论的编码参数优化被称为率失真优化,率失真优化技术是保证编码器效率的主要手段。率失真理论:在允许
- H266/VVC环路滤波技术概述
DogDaoDao
H266(VVC)标准H266VVC环路滤波SAO编码失真视频编解码音视频
环路滤波环路滤波:是提高编码视频主客观质量的有效工具,不同于图像增强处理中的滤波技术,环路滤波是在视频编码过程进行滤波,滤波后的图像用于后续图像的编码,即位于“环路”中。环路滤波的作用:一方面提高了编码图像的质量,一方面为后续编码图像提供了高质量的参考图像。常见的编码失真:方块效应、振铃效应、颜色偏差、图像模糊等常见编码失真效应。H266环路滤波技术:如下图,H266标准的环路滤波技术包括亮度映射
- H266/VVC网络适配层概述
DogDaoDao
H266(VVC)标准H266视频编解码NALUVVC网络适配层实时音视频
视频编码标准的分层结构视频数据分层的必要性:网络类型的多样性、不同的应用场景对视频有不同的需求。编码标准的分层结构:为了适应不同网络和应用需求,视频编码数据根据其内容特性被分成若干NAL单元(NALUnit,NALU),并对NALU的内容特性进行标识。网络只需要根据NALU及其标识就可以优化视频传输性能,不再需要亲自分析视频数据的内容特性。如下图就是典型的分层结构。H266中NAL的作用机制:原始
- H.266/VVC帧间预测技术学习:几何划分模式(Geometric partitioning mode, GPM)
涵小呆
VVC/H.266视频编码H.266/VVC
几何划分模式(Geometricpartitioningmode,GPM)原理针对图像中运动物体的边界部分,VVC采用了几何划分模式进行帧间预测。如下图所示,GPM模式在运动物体的边界处进行了更精细的划分。划分类型使用GPM模式时,通过几何定位的直线将CU划分为两部分(下图所示)。分割线的位置从数学上是根据特定分区的角度参数φ和偏移参数ρ得出的,如下图所示。VVC标准中的GPM规定将360°不等间
- H266/VVC变换编码技术概述
DogDaoDao
H266(VVC)标准人工智能机器学习H266VVC变换编码视频编解码DCT
视频变换编码变换编码:是指将以空间域像素形式描述的图像转换至变换域。以变换系数的形式加以表示。适当的变换可使图像能量在空间域的分散分布转换为在变换域的相对集中分布,从而达到去除空间冗余的目的。DCT:离散余弦变换(DiscreteCosineTransform,DCT)与去相关性性能最优的K-L变换相比,与输入信号无关且存在快速实现算法,性能接近K-L变换,广泛应用在图像视频编码中。H264首次使
- CompressAI:深度学习与传统图像压缩
qq_41627642
深度学习多模态深度学习人工智能
1、图像压缩算法原理传统的有损图像压缩方法,如JPEG,JPEG2000,HEVC或AV1或VVC,在类似的编码方案上进行了迭代改进:将图像划分为像素块,使用变换域通过线性变换(例如:DCT或DWT)去相关空间频率,基于相邻值执行一些预测,量化转换系数,最后使用有效的熵编码器(例如:CABAC[11])将量化值和预测侧信息编码成比特流。另一方面,基于人工神经网络的编解码器主要依赖于学习分析和综合非
- H266/VVC帧间预测编码技术概述
DogDaoDao
H266(VVC)标准人工智能视频编解码H266VVC深度学习预测编码实时音视频
帧间预测编码简述帧间预测利用视频时间域的相关性,使用邻近已编码图像像素值预测当前图像的像素值,能有效去除视频时域冗余。目前主要的视频编码标准中,帧间预测都采用基于块的运动补偿技术,不同的编码标准有不同的分块方式。为当前图像的每个像素块在之前已编码图像找到一个最佳匹配块,这个寻找过程就称为运动估计(MotionEstimation,ME)。用于预测的图像被称为参考图像或参考帧(ReferencePi
- H266/VVC帧内预测编码
DogDaoDao
H266(VVC)标准H266VVC帧内预测预测编码视频编解码实时音视频深度学习
预测编码技术预测编码(PredictionCoding)是指利用已编码的一个或多个样本值,根据某种模型或方法,对当前的样本值进行预测,并对样本真实值和预测值之间的差值进行编码。视频中的每个像素看成一个信源符号,它通常与空域上或时域上邻近的像素具有较强的相关性,因此视频是一种有记忆信源。预测编码技术通过预测模型消除像素间的相关性,得到的差值信号可以认为没有相关性,或者相关性很小,因此可以作为无记忆信
- Windows11编译VTM源码生成Visual Studio 工程
DogDaoDao
#VTMvisualstudioVTMH266VVC视频编解码WindowsVS2022
VTM介绍VTM作为H266/VVC标准的官方参考软件,一直用作H266/VVC标准的研究和迭代。关于H2666/VVC标准的介绍、代码、提案、文档等,可以参考H266/VVC编码标准介绍。官方代码地址:https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM(最新)git镜像地址:https://github.com/yanceyxin/VVCSo
- DCC2023:基于梯度线性模型的帧内色度预测
Dillon2015
H.266/VVC视频编码CCLMVVC
本来自DCC2023文章《GradientLinearModelforChromaIntraPrediction》在VVC中引入了CCLM工具,CCLM用于帧内预测,它根据一个线性模型通过亮度像素重建值获得色度像素的预测值。对于YUV420格式的视频,需要先将亮度分量使用低通滤波器下采样到和色度分量同样的分辨率,然后使用线性模型计算色度的预测值。然而下采样过程会丢失空域信息(例如边界、梯度),为了
- 【论文解读】Comparing VVC, HEVC and AV1 using Objective and Subjective Assessments
DogDaoDao
论文解读AV1VVCHEVC视频编解码HMVTMAOM
时间:2020级别:IEEE机构:IEEE组织摘要:对3种最新的视频编码标准HEVC(HighEfficiencyvideoCoding)测试模型HM(HighEfficiencyvideoCoding)、amediavideo1(AV1)和VersatilevideoCoding测试模型(VTM)进行了客观和主观质量评价。通过精细化选择9个源序列,使其具有多样性和代表性,并在预定义的目标码率下对
- H266/VVC标准的编码结构介绍
DogDaoDao
H266(VVC)标准H266VVC视频编解码实时音视频VTM
概述CVS:H266的编码码流包含一个或多个编码视频序列(CodedVideoSwquence,CVS),每个CVS以帧内随机接入点(IntraRandomAccessPoint,IRAP)或逐渐解码刷新(GradualDecodingRefresh,GDR)图像开始。CVS是时域独立可解码的基本单元。CLVS:编码视频序列层,当编码码流只包含一层时,CVS与CLVS一致。AU:访问单元PU:图像
- H266/VVC编码标准介绍
DogDaoDao
H266(VVC)标准VVCH266视频编解码实时音视频VTM
视频编码标准多样的视频应用催生了多种的视频编码方法。为了使编码后的码流能够在大范围内通用和规范,从20世纪80年代开始,国际组织就开始对视频编码建立国际标准。什么是视频编码标准:视频编码标准只规定了码流的语法语义和解码器,只要求视频编码后的码流符合标准的语法结构,解码器就可以根据码流的语法语义进行正常解码。因此,符合某个解码标准的编码器是有很大的自由度的,只要编码后的码流符合标准规定即可。编码器输
- 屏幕内容编码:HEVC SCC、VVC、AVS3、AV1和EVC
若忘即安
VVC/H.266音频编码解码
近年来,随着许多相关应用变得非常流行,包括计算机生成的文本、图形和动画在内的屏幕内容视频引起了比以往更多的关注。然而,传统的视频编解码器通常被设计成处理摄像机捕获的自然视频。另一方面,屏幕内容视频表现出不同的信号特征和人类对失真的视觉敏感度的不同水平。为了解决对这种内容进行高效编码的需要,已经专门开发了许多编码工具,并且在编码效率方面取得了巨大进步。所有最近开发的视频编码标准都包含屏幕内容编码(S
- H.266/VVC的关键编码技术(五):AI, RA, LD三种编码结构
若忘即安
VVC/H.266视频处理音频编码解码
AI,RA,LD三种编码结构VVC中采用三种编码结构:全帧内(AI,A11lntra)、低延迟(LD,LowDelay),随机接入(RA,RandomAccess),分别用于满足不同场景下的编码需求。AI编码在全帧内编码结构下,序列中每一帧图像均采用帧内编码,具有各自独立的上图所示,I帧不需要参考其他帧的像素信息,可独立的进行编解码,且每一帧的量化参数都保持一致,AI编码结构适合信道环境较差,容易
- H.266/VVC的编码框架
若忘即安
VVC/H.266视频处理音频编码解码
VVC编码框架VVC仍沿用从H.261开始使用的基于块的混合视频编码框架,包括帧内预测、帧间预测、变换、量化、环路滤波、嫡编码等。基本流程是首先利用帧内/帧间预测编码消除空域/时域冗余,接着对预测残差进行变换量化编码消除残差数据间的空域冗余,最后通过嫡编码消除经变换和量化后的残差数据中的信息嫡冗余。在VVC中,视频进入编码器后,每帧图像首先被划分为互不重叠的图像块,称之为编码树单元(CodingT
- H.266VVC的关键编码技术(一):帧内预测
若忘即安
VVC/H.266视频处理音频编码解码调制与编码策略
1.帧内预测帧内预测是指利用视频中相邻像素之间的相似性或者关联性,使用当前图像己编码的相邻像素预测当前像素,从而达到去除空间冗余的口的,得到的预测残差将经过后续的变换、量化和嫡编码等模块进一步处理生成最终的码流。(1)帧内预测模式为了捕捉自然视频中任意的边缘方向,VVC中的帧内预测模式从HEVC中使用的33种扩展到65种。红色虚线表示了VVC中新出现的帧内角度预测模式,黑色为HEVC原有的帧内预测
- AVC、HEVC、VVC帧间预测技术
傻不拉几的程序员
工作学习编解码AVCHEVCVVC
帧间预测总体思路:帧间预测主要的工作是运动估计与运动补偿。所谓运动估计简单说就是在参考帧中找到当前块的最优参考块,用运动向量(MV)表示参考块与当前块的位置关系。所谓运动补偿简单说就是对参考块与当前块求差值得到残差用于传输。总的过程:通过搜索算法找到最优的参考块,计算MV,计算残差,MV提供位置信息,残差提供值的信息。========================================
- AOMedia发布免版税沉浸音频规范IAMF
LiveVideoStack_
音视频
11月10日,开放媒体联盟(AOMedia)发布了旗下首个沉浸式音频规范IAMF(https://aomediacodec.github.io/iamf/),IAMF是一种编解码器无关的容器规范,可以携带回放时间渲染算法和音频混音的信息,而且和旗下的AV1视频标准一样为免版税。从AV1开始,AOMedia就在用开放来对抗老牌的标准组织ITU与ISO/IEC的HEVC、VVC等标准。目前,AV1已经
- 编解码再进化:Ali266与下一代视频技术
LiveVideoStack_
音视频
过去的一年见证了人类百年不遇的大事记,也见证了多种视频应用的厚积薄发。而因此所带来的视频数据量的爆发式增长更加加剧了对高效编解码这样的底层硬核技术的急迫需求。正是在这样的大环境下,在ITU-TVCEG和ISO/IECMPEG两大标准组织再次联手推出的最新视频编解码标准VVC定稿不久之后,阿里巴巴的视频团队开始全力投入开展VVC软件编解码的开发工作。本次LiveVideoStackCon2021北京
- 阿里云视频云发布实时高清VVC编码器Ali266,真正开启VVC商用之路
阿里云视频云
阿里云视频云阿里云视频处理视频编码编码器视频云
基于新一代国际视频编解码标准H.266/VVC,阿里云视频云近日发布了实时高清编码器Ali266,有力推动H.266/VVC标准应用的落地,真正开启H.266/VVC的商用之路,并强力赋能超高清4K、8K、以及AR/VR等应用的真实普及。编码器Ali266=实时+高清+超压缩阿里云视频云于7月中发布了实时高清VVC编码器Ali266首个版本,从已公开的资料可知,这是目前全世界最快的VVC编码器。具
- AVS3:双向光流BIO
Dillon2015
AVS3视频编码avs3双向光流BIOBDOF1024程序员节
AVS3引入了双向光流(BI-directionalOpticalflow,BIO)技术,和H.266/VVC中的BDOF类似,BIO用于解决基于块的预测会存在块内某些区域仍会有偏差的现象导致需要划分更小的块。通过补偿小的像素区域的位移,BIO可以使用更大的块来编码从而节省码率,达到像素级预测的效果。如图1,左侧是双向光流补偿前的预测结果,右侧是补偿后的预测结果。图1补偿前后的预测传统的双向预测对
- AVS3:跨分量预测TSCPM
Dillon2015
AVS3视频编码avs3TSCPMCCLM
TSCPM两步跨分量预测模式(TSCPM,TwoStepCross-componentPredictionMode)通过探索不同分量之间的线性关系去除分量间冗余。TSCPM分为两个步骤执行,首先使用Co-locatedluma块通过参数α和β生成尺寸相同的临时预测块,第二步再进行下采样,得到色度分量的预测值,如图1。图1TSCPMAVS3的TSCPM仅用于intra模式中,类似于VVC中的CCLM
- 帧间快速算法论文阅读
什么都不懂的小青蛙
智能视频编码算法论文阅读视频编解码机器学习深度学习人工智能
LowcomplexityintercodingschemeforVersatileVideoCoding(VVC)通过分析相邻CU的编码区域,预测当前CU的编码区域,以终止不必要的分割模式。1、2、3、4表示当前CU(CU0)的相邻CU。根据空间相关性,当前CU的面积预测为wiw_iwi的值分别为0.3,0.2,0.3,0.2。(考虑到水平方向和垂直方向的相关性大于对角线方向的相关性)当预测面积
- VVC中图片的划分
Ginkgo
在VVC中,输入的视频首先被划为为相等大小的块(最大支持划分为128×128大小的块,虽然VVC支持的变换的块最大尺寸为64×64),这些等大的块成为CTUs(codingtreeunits),每一个CTU都有Y、Cb、Cr三个等大的CU。图1混合编码框架把输入的图像划分为CTUs之后,再对CTUs进行进一步的归类。在HEVC中,可以把CTUs分为Slice和Tile,其中Slice可以进一步划分
- 多维评测指标解读第17届MSU世界编码器大赛全高清10bit赛道结果
阿里云视频云
硬核干货云计算视频云
超高清视频纤毫毕现的关键一环。01主要指标多项第一,带宽节省48%近日,第17届MSU世界编码器大赛全高清10bit赛道成绩揭晓,阿里自研的H.266/VVC编码器Ali266在该赛道最高效的1fps档次上获得两项冠军,相较大赛基准编码器x265可节省48%的带宽,有效降低超高清视频门槛,推动其普及。MSU世界编码器大赛是指由莫斯科国立大学(LomonosovMoscowStateUniversi
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite