- linux(ubuntu)中Conda、CUDA安装Xinference报错ERROR: Failed to build (llama-cpp-python)
小胡说技书
杂谈/设计模式/报错Data/Python/大模型linuxubuntuconda大模型pythonXinference
文章目录一、常规办法二、继续三、继续四、缺少libgomp库(最终解决)在Conda环境中安装libgomp如果符合标题情况执行的:pipinstall"xinference[all]"大概率是最终解决的情况。一、常规办法llama-cpp-python依赖CMake、Make和g++来编译,所以可能是缺少依赖或者环境配置不对。按照以下步骤排查问题并解决:1.确保Python版本符合要求llama
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- Java final关键字
不知江月待何人..
javajava开发语言
一、final关键字概述final是Java中用于限制修改的关键字,它可以修饰类、方法和变量,被修饰的实体将具有"不可改变"的特性。合理使用final关键字能提高代码安全性、可读性,并有助于JVM进行优化。二、final修饰类1.特性被final修饰的类不能被继承常用于设计不需要扩展的类或安全敏感类2.代码示例finalclassPerson{//无法被继承的最终类//类内容...}//错误示例:
- 鸿蒙特效教程03-水波纹动画效果实现教程
苏杰豪
鸿蒙特效教程HarmonyOSharmonyos华为
鸿蒙特效教程03-水波纹动画效果实现教程本教程适合HarmonyOS初学者,通过简单到复杂的步骤,一步步实现漂亮的水波纹动画效果。最终效果预览我们将实现以下功能:点击屏幕任意位置,在点击处生成一个水波纹触摸并滑动屏幕,波纹会实时跟随手指位置生成波纹从小到大扩散,同时逐渐消失波纹颜色随机变化,增加视觉多样性一、创建基础布局首先,我们需要创建一个基础页面布局。这个布局包含一个占满屏幕的区域,用于展示水
- linux中dhcp如何配置两个子网,linux – 配置DHCP服务器以在同一VLAN上为多个子网提供服务...
Retsuki Uchu
我有一个由多个子网组成的VLAN,我想使用DHCP集中IP地址指定.DHCP服务器(100.100.25.88)是子网100.100.25.64/27上的Debian计算机.我想为子网100.100.68.0/24中的计算机分配IP地址.最终目标是在100.100.68.0/24子网中的所有计算机上启用PXE引导.下面是我的dhcpd.conf文件,#DHCPConfigurationfileus
- ARTS Week 45
javascript
Algorithm本周的算法题为1475.商品折扣后的最终价格给你一个数组prices,其中prices[i]是商店里第i件商品的价格。商店里正在进行促销活动,如果你要买第i件商品,那么你可以得到与prices[j]相等的折扣,其中j是满足j>i且prices[j]{letlowerPriceIndexes=[]letpriceDifference=0prices.forEach((compare
- 贪心算法(5)(java)k次取反后最大化的数组和
奋进的小暄
贪心算法java算法
题目:给定一个整数数组`nums`和一个整数`k`,你可以进行最多`k`次取反操作。每次操作可以选择数组中的一个元素并将其取反(即`x`变为`-x`)。最终返回经过`k`次取反操作后,数组可能的最大总和。解法:分情况讨论。设:整个数组中负数的个数是m个1.m>k:把前k小负数转化成正数2.m==k:把所有负数全部转化成正数3.mk){//情况一:负数个数多于k次反转Arrays.sort(nums
- Java对比Python,谁才是编程王者?
Java学研大本营
pythonjava开发语言
Python和Java是目前编程最受欢迎的两种语言,本文从多角度比较二者的相同点和差异,帮助你更深入地了解两种语言的特点,最终能根据你自身的需求来进行选择。微信搜索关注《Java学研大本营》Python和Java是当今世界上最流行的两种编程语言。两者都被广泛用于各种行业和应用,从网络开发到机器学习再到数据分析。但是这两种语言哪个更好呢?在这本中,我们将多方面比较Python和Java,探索二者的历
- 数据标注质量对AI模型质量的影响分析
自由鬼
行业发展IT应用探讨人工智能机器学习深度学习AI
上、数据标注质量与AI模型的质量关系数据标注是AI最基础的工作,数据标注的质量决定了AI质量,影响数据标注质量的是数据标注的规则。1、数据标注是AI最基础的工作:数据标注是构建高质量AI模型的基石:数据标注尤其是在监督学习范式下,是AI领域最基础、最关键的工作之一。没有高质量的标注数据,就如同建造高楼大厦没有坚实的地基,AI模型就无法有效地学习和训练,最终的AI质量也就无从谈起。训练数据是AI模型
- 自动化测试:灵活书写XPATH定位路径
ZJ_star_1220
pythonhtmlcss前端python
进行UI自动化测试过程中XPATH定位是使用最多的定位方法,但是有时候直接复制出来的XPATH路径会比较长,所以就需要掌握一些更高级的方法,通过询问AI,最终得到了以下方法,感觉很有用,所以记录下来一、基础定位语法绝对路径与相对路径绝对路径:以/开头,从根节点逐层定位(如/html/body/div/input),路径长且易受页面结构调整影响相对路径:以//开头,直接定位目标元素(如//input
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- 医学文本分析中的命名实体识别:从理论到实践
软件职业规划
语言模型unity人工智能
1.数据预处理数据预处理是医学命名实体识别系统的基础步骤,其质量直接影响模型的训练效果和最终性能。数据预处理主要包括医学文本的标注、清洗以及数据增强三个方面。1.1医学文本的标注标注是数据预处理中的关键环节,其目的是将医学文本中的实体明确标记出来,以便模型能够学习到实体的特征和边界。标注的方式通常采用BIO标注法。1.1.1BIO标注法BIO标注法是一种广泛应用于命名实体识别任务的标注方式,它通过
- git自动化部署post-receive无效(转载至segmentfault的sowork回答)
php_M
phpgit
本人在linux服务器下搭建了gitlab,创建项目,git本地推送,都正常。但是服务器上如何才能映射到该项目?通过咨询,得知,需要Git自动化部署。网上找了办法,几乎都是post-receive,但是设置了后也没效果。最终在思否里面一个回答者的办法试了,管用了。如下:安装完git后,git自带有钩子脚本比如我们的仓库是/var/git-repository/myRepo.git//备注:如果找不
- 欧拉角的,万向锁---和---奇点,的数学解释
Zwc 1
飞行器无人机
效果演示部分(注意,欧拉旋转的三个转动参数,是从初始位置开始然后按照顺序的转动再到达最终姿态,而不是在现有姿态上进行绕自己某个轴来转动)如下动图所示,在欧拉旋转中(真笛卡尔坐标系中,围绕自身坐标轴的有固定旋转的顺序),当某个轴旋转90度时候,不管怎么给另外两个旋转轴数值,产生的效果都只是能围绕某个轴进行转动。这样的话相当于两个轴合并成了一个轴(两个系数合并成一个系数)(这就是所谓的损失了一个自由度
- 董事长十几刀刺死 CTO:一个要“先发布后优化”,一个坚持先优化。。。
程序员的那些事_
大家好,我是小程程。今天又是一起很刑的真实案例,也就上周的事。董事长刺死CTO3月7日,中国台湾省的云云科技公司发生一件震惊业界的命案。52岁的董事长曾志新因与51岁的梁姓CTO长期理念不合,在公司离职谈判期间持水果刀从背后猛刺CTO十余刀,最终致其身亡。曾董(左)和梁哥(右)据台北市信义区警方调查,双方在产品开发策略与管理模式上积怨已深,最终演变为暴力惨剧。梁哥是在2022年1月由前CTO引荐加
- 变压器油温实时监测模块设计与仿真(论文+仿真)
云山工作室
单片机嵌入式硬件毕业设计
1系统方案设计经过上述的功能需求分析和各个关键模块的选型后,最终得到了如图2.1所示的系统框图。采用了AT89S51单片机来作为控制器,同时结合DS18B20温度传感器来对变压器油温进行检测,同时配合LCD液晶,蜂鸣器,继电器等模块来实现85度时发出声光报警,在温度达到95度时,跳开变压器的开关(通过继电器开启来模拟),并同时发出声光报警的功能。2仿真效果
- 深度学习之优化器Optimizer介绍
yueguang8
人工智能深度学习人工智能
优化器(Optimizer)是深度学习训练中非常关键的组件,它负责根据损失函数的梯度来更新模型参数,从而使模型性能不断提升。1.优化器的作用和重要性优化器是训练深度学习模型的核心组件之一。它负责根据损失函数的梯度来更新模型参数,推动模型性能不断提高。选择合适的优化器可以极大地影响模型的收敛速度和最终性能。2.优化器的基本原理优化器的基本思路是利用梯度下降法来最小化损失函数。每一步都根据当前梯度的方
- python全栈开发流程_【python全栈开发】初识python
weixin_39609051
python全栈开发流程
本人最开始接触python是在2013年接触,写过helloword!在此之前对开发类没有多大兴趣,不知道重要性,属于浑浑噩噩,忙忙乎乎,跌跌撞撞的。随后选择了Linux运维作为就业主攻方向。经过几年的工作实际情况,越发觉得懂开发的运维是多么的重要。经过再三思虑,决定重拾开发学习。看过php\lua\python;最终选定python作为首选主攻对象。通过博客记录python的学习之路。记录这传奇
- 贪心算法——c#
山水CAD筑梦人
C#学习笔记贪心算法算法
贪心算法通俗解释贪心算法是一种"每一步都选择当前最优解"的算法策略。它不关心全局是否最优,而是通过局部最优的累积来逼近最终解。优点是简单高效,缺点是可能无法得到全局最优解。一句话秒懂自动售货机找零钱:用最少数量的硬币凑出指定金额。比如找零198美分,它会优先用25美分的大硬币,不够再用小的,直到凑够金额。背景故事想象你在加拿大超市当收银员(CAD场景):顾客买了东西你需要快速找出零钱198分收银台
- 克服 AI 时代的恐惧、不确定性和疑虑
人工智能
1学习咋通过培养AI技能,提高职场对AI的积极性职场中抵触AI的现象确实存在。很多人并非不愿意接受变化,而是因为对AI存在“FUD”——即恐惧(Fear)、不确定性(Uncertainty)和疑虑(Doubt)。要在AI转型时代取得成功,必须积极应对这些FUD,并营造一种支持学习的文化,让员工能够适应和成长,最终推动整个组织共同进步。大厂们都始终在内部率先使用和测试自家的AI技术,然后才推向客户。
- [LeetCode][Golang] 26. 删除有序数组中的重复项
DecXu
LeetCode题解leetcode算法golang
题目:给你一个升序排列的数组nums,请你原地删除重复出现的元素,使每个元素只出现一次,返回删除后数组的新长度。元素的相对顺序应该保持一致。由于在某些语言中不能改变数组的长度,所以必须将结果放在数组nums的第一部分。更规范地说,如果在删除重复项之后有k个元素,那么nums的前k个元素应该保存最终结果。将最终结果插入nums的前k个位置后返回k。不要使用额外的空间,你必须在原地修改输入数组并在使用
- 深入解析AI PPT实现原理及用到的人工智能技术
码上飞扬
AIGC人工智能powerpointAIPPT
一、引言随着人工智能技术的飞速发展,AI在各个领域的应用越来越广泛。其中,AIPPT(自动生成演示文稿)作为一项新兴技术,正逐渐改变人们制作演示文稿的方式。本文将深入解析AIPPT的实现原理,并探讨其中用到的人工智能技术。二、AIPPT的实现原理AIPPT的实现原理是一个复杂且多步骤的过程,涉及从内容理解到最终演示文稿生成的全流程。以下是每个步骤的详细解析:1.内容理解与分析内容理解与分析是AIP
- 使用GMap.NET类库,实现地图轨迹回放。(WPF版)
源之缘-OFD专家—求职中
WPFgis.netwpfhadoop
前言实现轨迹回放,GMap.NET有对应的类GMapRoute。这个类函数很少,功能有限,只能实现简单的轨迹回放。要实现更复杂的轨迹回放,就需要自己动手了。本文介绍一种方法,可以实现复杂的轨迹回放。有句话“功夫在诗外”,GMap.NET给你提供了基本地图处理功能;但是不要让CMap.NET束缚了手脚。你需要有深刻理解地图实现原理,深入理解WPF动画的原理,才能到达随心所欲。最终的效果如下:GMap
- 【LLM大模型】大模型涌现能力及 Prompt Engineering提示词
Langchain
prompt人工智能llamalangchainai大模型LLM
涌现能力GPT3是第一批拥有“涌现能力”的大语言模型,即模型未经特定任务的训练,但在适当的提示下,仍然能够解决某些特定领域的问题。例如大语言模型可以解答数学问题、辅助进行编程、甚至是进行问答等,其实都属于模型的涌现能力。作为概率模型,大语言模型甚至不知道数字代表的真实含义,模型只是在学习了无数的语料之后,发现了一些数学结论之间的潜在概率关系,才最终涌现出了数学运算或者复杂推理的能力。但是“涌现能力
- 分布式存储—— HBase数据模型 详解
Future_yzx
分布式hbase数据库
目录1.3HBase数据模型1.3.1两类数据模型1.3.2数据模型的重要概念1.3.3数据模型的操作1.3.4数据模型的特殊属性1.3.5CAP原理与最终一致性1.3.6小结本文章参考、总结于学校教材课本《HBase开发与应用》1.3HBase数据模型在开始学习HBase之前非常有必要先学习HBase的特性,因此本节将介绍HBase的逻辑模型、物理模型和访问HBase的方法等。和传统的关系型数据
- HarmonyOS角落里的知识:通过图库中的图片并显示在Image组件中
不入流HarmonyOS开发
HarmonyOSOpenHarmony鸿蒙harmonyos华为android鸿蒙开发OpenHarmony程序员鸿蒙
效果呈现本例最终效果图如下。效果说明:点击头像处的相机,拉起用户图库,选择要上传的图片,点击上传,头像随即更新为上传后的图片。环境要求本例基于以下环境开发,开发者也可以基于其他适配的版本进行开发:IDE:DevEcoStudio4.0ReleaseSDK:Ohos_sdk_public4.0.10.13(APIVersion10Release)点击领取→纯血版全套鸿蒙HarmonyOS学习资料希望
- 深度学习核心技术深度解析
月落星还在
深度学习深度学习人工智能
一、深度学习的本质与核心思想定义:通过多层非线性变换,自动学习数据层次化表征的机器学习方法核心突破:表征学习:自动发现数据的内在规律,无需人工设计特征端到端学习:直接从原始输入到最终输出,消除中间环节的信息损失分布式表示:通过神经元激活模式的组合,指数级提升表达能力数学本质:f(x)=WLσ(WL−1σ(...σ(W1x+b1)...)+bL−1)+bLf(x)=W_{L}σ(W_{L-1}σ(.
- Epoch 和 Batch Size的设计 + 模型的早停策略(基于上篇)
一只小铁柱
batch开发语言
一.epoch和batchsize的设计epoch和batchsize是训练神经网络时的两个关键超参数,它们的设计会直接影响模型的训练速度、收敛性和最终性能。1.Epoch的设计epoch表示整个数据集被模型完整遍历一次。设计epoch时需要考虑以下因素:1.1数据集大小小数据集(例如几MB的文本数据):模型容易过拟合,因此epoch不宜过大(例如10-30)。可以使用早停(earlystoppi
- Python爬虫:从人民网提取视频链接的完整指南
小白学大数据
pythonpython爬虫音视频开发语言大数据
无论是用于数据分析、内容提取还是资源收集,Python爬虫都因其高效性和易用性而备受开发者青睐。本文将通过一个实际案例——从人民网提取视频链接,详细介绍如何使用Python构建一个完整的爬虫程序。我们将涵盖从基础的网络请求到HTML解析,再到最终提取视频链接的全过程。一、爬虫技术概述网络爬虫(WebCrawler)是一种自动化的程序,用于在互联网上浏览网页并收集信息。它通过模拟浏览器的行为,发送H
- backbone和head分开转onnx的优势
yuweififi
人工智能深度学习机器学习
模型转换为ONNX格式时,将其分成backbone和head两个部分,通常是出于以下原因:1.模块化设计backbone通常是模型的特征提取部分(例如卷积神经网络的主干部分),负责从输入数据中提取高级特征。head是模型的输出部分,负责根据backbone提取的特征生成最终的预测结果(例如分类、检测、分割等)。将模型分成两部分可以实现模块化设计,便于在不同任务中复用backbone或head。例如
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数