- DataWhale Pandas数据分析 Task01:预备知识
Shawnxs_
DataWhalePandas数据分类pythonpandas
文章目录练习Ex1:利用列表推导式写矩阵乘法Ex2:更新矩阵Ex3:卡方统计量Ex4:改进矩阵计算的性能Ex5:连续整数的最大长度心得体会练习Ex1:利用列表推导式写矩阵乘法一般的矩阵乘法根据公式,可以由三重循环写出:In[138]:M1=np.random.rand(2,3)In[139]:M2=np.random.rand(3,4)In[140]:res=np.empty((M1.shape[
- Day04-线性代数-特征值和特征向量(DataWhale)
liying_tt
数学基础线性代数
七、特征值和特征向量AAA是n阶方阵,数λ\lambdaλ,若存在非零列向量α⃗\vec{\alpha}α,使得Aα⃗=λα⃗A\vec{\alpha}=\lambda\vec{\alpha}Aα=λα,则λ\lambdaλ是特征值,α⃗\vec{\alpha}α是对应于λ\lambdaλ的特征向量λ\lambdaλ可以为0α⃗\vec{\alpha}α不能为0⃗\vec{0}0,且为列向量Aα⃗
- 用Transformer实现OCR字符识别!
Datawhale
大数据数据挖掘编程语言python计算机视觉
Datawhale干货作者:安晟、袁明坤,Datawhale成员在CV领域中,transformer除了分类还能做什么?本文将采用一个单词识别任务数据集,讲解如何使用transformer实现一个简单的OCR文字识别任务,并从中体会transformer是如何应用到除分类以外更复杂的CV任务中的。全文分为四部分:一、数据集简介与获取二、数据分析与关系构建三、如何将transformer引入OCR四
- Datawhale X 李宏毅苹果书 AI夏令营 入门 Task3-机器学习框架
沙雕是沙雕是沙雕
人工智能机器学习
目录实践方法论1.模型偏差2.优化问题3.过拟合4.交叉验证5.不匹配实践方法论1.模型偏差当一个模型由于其结构的限制,无法捕捉数据中的真实关系时,即使找到了最优的参数,模型的损失依然较高。可以通过增加输入特征、使用更复杂的模型结构或采用深度学习等方法来新设计模型,增加模型的灵活性。2.优化问题在机器学习模型训练过程中,即使模型的灵活性足够高,也可能由于优化算法的问题导致训练数据的损失不够低。为了
- Datawhale X 李宏毅苹果书 AI夏令营-深度学入门task2:线性模型
m0_53743757
人工智能机器学习算法
1.线性模型把输入的特征x乘上一个权重,再加上一个偏置就得到预测的结果,这样的模型称为线性模型(linearmodel)2.分段线性模型线性模型也许过于简单,x1跟y可能中间有比较复杂的关系。线性模型有很大的限制,只能表示一条直线,这一种来自于模型的限制称为模型的偏差,无法模拟真实的情况。所以需要写一个更复杂的、更有灵活性的、有未知参数的函数。分段线性曲线(piecewiselinearcurve
- 聪明办法学Python第1节:启航
m0_53743757
python开发语言
作业链接:https://hydro.ac/d/datawhale_p2s/user/53146第一行代码print("聪明办法学Python")#输出:聪明办法学PythonHelloWorld的由来1972年,贝尔实验室成员BrianKernighan首次在程序中使用"hello,world"。注释Comment分类:单行注释,使用#开头多行注释,使用'''或"""包裹起来作用:注释主要是用于
- Datawhale七月组队——动手学数据分析 Task01 数据加载及探索性数据分析
郁浓
第一次的打卡内容包括数据的载入及初步观察、Pandas基础以及探索性数据分析三个部分。1.数据的载入及初步观察这一节内容中,刚开始绝对路径的设置中"/"和'''\'用错了,直接拿文件夹的路径粘贴过来,导致运行失败使用pandas中read_csv读取csv数据时,对于有表头的数据,将header设置为空(None),会报错:pandas_libs\parsers.pyxinpandas._libs
- Datawhale AI夏令营第五期CV Task01
m0_60530253
人工智能
一、报名参加2024大运河杯数据开发大赛1.登录赛事平台2.修改昵称,实名认证3.打开比赛链接报名参赛4.修改队伍名称二、领取厚德云支持的GPU在线算力!(点击即可跳转)三、体验baseline1.下载baseline相关文件aptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datasets/Datawhale/AI_C
- Datawhale AI夏令营第五期CV Task02
m0_60530253
人工智能深度学习
一、yolo模型介绍YOLO,全称为"YouOnlyLookOnce",是一种流行的实时目标检测算法,由JosephRedmon等人于2015年首次提出。YOLO的核心思想是将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这种设计使得YOLO能够以非常快的速度进行目标检测,同时保持较高的精度,特别适合需要实时处理的应用场景。YOLO算法的一个显著特点是它在单个网络
- Datawhale AI夏令营第五期魔搭-CV竞赛方向Task1笔记--初识yolo模型
切记 我是一个 温柔的 刀客
YOLO目标检测机器学习
DatawhaleAI夏令营第五期魔搭-CV竞赛方向Task1笔记–初识yolo模型作者:福州大学我是一个温柔的刀客2024/8/221.赛题简介本赛题最终目标是开发一套智能识别系统,能够自动检测和分类城市管理中的违规行为。该系统应利用先进的图像处理和计算机视觉技术,通过对摄像头捕获的视频进行分析,自动准确识别违规行为,并及时向管理部门发出告警,以实现更高效的城市管理。本质上是属于CV中的目标检测
- Datawhale Al夏令营第三期 Al+物质科学task2学习笔记
weixin_75033552
学习笔记
AI4Science是一个较为普遍的术语,通常指的是人工智能在科学研究和技术发展中的应用。它涵盖了各种科学领域,包括物理学、化学、生物学、地球科学等。虽然没有一个特定的确切历史,但可以描述人工智能在科学研究中的一些早期里程碑和发展趋势。早期发展知识表示与推理:20世纪70年代末和80年代初,早期的AI研究开始探索如何用机器推理来模拟人类的思维过程。这种推理方式被应用于物理学、化学等学科中,尝试解决
- Datawhale x李宏毅苹果书入门 AI夏令营 task03学习笔记
weixin_75033552
人工智能学习笔记
实践方法论训练模型的基本步骤:(如下图所示)用训练集训练模型,(最终得出来最优的参数集)将最优参数集带入模型中,用测试集测试模型(人话:将最优参数集带入原来函数中,用测试集的x值计算y值)(这个过程就叫做预测)训练过程中遇到问题的解决攻略(看下图的方式是“前序遍历”)modelbias出现问题的情况:1.看trainingdata的loss,太大;2.当你模型无论如何调整参数,训练的结果还是不够好
- Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类
沙雕是沙雕是沙雕
人工智能学习深度学习
目录1.自适应学习率1.1AdaGrad1.2RMSProp1.3Adam1.4学习率调度1.5优化策略的总结2.分类2.1分类与回归的关系2.2带有softmax的分类2.3分类损失1.自适应学习率传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法
- Datawhale AI夏令营
于弋gg
人工智能计算机视觉python
一、分析CV识别任务任务分析自己研究生期间做过的大多是无监督任务,监督任务做的很少。比如,之前用过yolov5做过滑动验证码的识别,给滑动验证码的缺口打标签是项耗时费力的工作。本次任务相同,是给非机动车、机动车打标签。frame_id:不同帧event_id:一帧里面出现的不同车辆idbbox:车辆位置模型输入输出猜测1)如果识别车辆很容易,那么输入原始音频x,标出每帧的位置作为输出,记为y。放进
- [Datawhale#1] cv task1 - Datawhale AI夏令营
cinboxer
cvpythonnumpypandasmatplotlib
参加cv方面的培训,记录自己的一些感悟吧。报名赛事2024“大运河杯”数据开发应用创新大赛——城市治理厚德云远程算力租赁https://portal.houdeyun.cn/register?from=Datawhale可以用3090,速度很快!baselineaptinstallgit-lfsgitlfsinstallgitclonehttps://www.modelscope.cn/datas
- [Datawhale AI 夏令营][第五期]智能识别系统-Task1笔记
keexh
人工智能笔记
任务是发布在MARS大数据服务平台的2024“大运河杯”数据开发应用创新大赛——城市治理。了解智慧河长的朋友可能听说类似的项目,它们可以识别河道中出现的一些问题。这次的智能识别系统与前者有相似的地方,但这个系统将聚焦城市违规行为的智能检测,通过研究开发高效可靠的计算机视觉算法,提升违规行为检测识别的准确度,降低对大量人工的依赖,提升检测效果和效率,从而推动城市治理向更高效、更智能、更文明的方向发展
- DataWhale AI夏令营 2024大运河杯-数据开发应用创新赛-task2
十分钟ll
DataWhaleAI夏令营人工智能目标跟踪计算机视觉DataWhale竞赛大运河杯机器学习
DataWhaleAI夏令营2024大运河杯-数据开发应用创新赛YOLO(YouOnlyLookOnce)上分心得分享YOLO(YouOnlyLookOnce)YOLO算的上是近几年最火的目标检测模型了,被广泛的应用在工业、学术等领域。YOLOv1(YouOnlyLookOnce第一版)于2016年由JosephRedmon等人在其论文《YouOnlyLookOnce:Unified,Real-T
- Datawhale X 李宏毅苹果书AI夏令营深度学习详解进阶Task02
z are
人工智能深度学习
目录一、自适应学习率二、学习率调度三、优化总结四、分类五、问题与解答本文了解到梯度下降是深度学习中最为基础的优化算法,其核心思想是沿着损失函数的梯度方向更新模型参数,以最小化损失值。公式如下:θt+1←θt-η*∇θL(θt)其中,θ表示模型参数,η表示学习率,L表示损失函数,∇θL表示损失函数关于参数的梯度。然而,梯度下降在复杂误差表面上存在局限性。例如,在鞍点或局部最小值处,梯度接近零,导致模
- 2020-03-24
黑乎乎AI
Datawhale零基础入门数据挖掘-Task2数据分析【代码摘要】赛题:零基础入门数据挖掘-二手车交易价格预测地址:[https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX]EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确
- Datawhale AI夏令营-task03
ghost_him
人工智能
DatawhaleAI夏令营-task03笔记来源:DatawhaleAI夏令营数据增强基础数据增强是一种在机器学习和深度学习领域常用的技术,尤其是在处理图像和视频数据时。**数据增强的目的是通过人工方式增加训练数据的多样性,从而提高模型的泛化能力,使其能够在未见过的数据上表现得更好。**数据增强涉及对原始数据进行一系列的变换操作,生成新的训练样本。这些变换模拟了真实世界中的变化,对于图像而言,数
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- 局部极小值与鞍点 Datawhale X 李宏毅苹果书 AI夏令营
千740
人工智能深度学习机器学习
1,为什么随着参数的不断更新,损失无法降低?当参数对损失微分为零的时候,梯度下降就不能再更新参数了,训练就停下来了,损失不再下降了,此时梯度接近于0。我们把梯度为零的点统称为临界点(criticalpoint)。损失没有办法再下降,也许是因为收敛在了临界点,临界点包括局部极小值,局部极大值和鞍点(梯度是零且区别于局部极小值和局部极大值(localmaximum)的点)2,如果一个点的梯度接近于0,
- Datawhale X 李宏毅苹果书 AI夏令营Day03
xuanEpiphany29
人工智能
一、打卡Datawhale二、学习1、文档学习图中展示了一个函数集合,其中包含多个未知参数的函数fθ1(x)和fθ2(x)。通过将这些函数组合起来,可以得到一个更大的函数集合。然而,如果这个函数集合太小了,没有包含任何一个函数,那么即使找到了一个最优的θ∗,其损失仍然不够低。这就像大海里捞针一样,想要找到一个损失低的函数,但最终却发现这个函数并不在这个函数集合内。在这种情况下,可以通过重新设计模型
- Datawhale X 李宏毅苹果书 AI夏令营Day02
xuanEpiphany29
人工智能
一、打卡Datawhale进入打卡链接选择相对应的任务打卡就可以了二、学习1、线性模型依旧是b站上老师的授课视频,我找到知乎上解释很好的文章,分享一下机器学习(一)线性模型————理论篇线性回归模型、对数几率模型、线性判别分析模型、多分类学习模型-知乎(zhihu.com)(1)、模型概述线性模型是机器学习中一种非常基础且重要的模型,广泛应用于分类和回归任务。线性模型的基本思想是通过一个线性方程来
- FastAPI部署大模型Llama 3.1
记得叫Mark周更
人工智能
项目地址:self-llm/models/Llama3_1/01-Llama3_1-8B-InstructFastApi部署调用.mdatmaster·datawhalechina/self-llm(github.com)目的:使用AutoDL的深度学习环境,简单部署大模型环境准备考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了LLaMA3-1的环境镜像,点击下方链接并直接创
- Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记
汪贤阳
人工智能AIGC笔记
如何学习八图ai模型kolors1,Kolors是由快手公司开源的第三代文本到图像生成模型,基于StableDiffusion框架开发。它支持中英文输入,特别在中文内容的理解和生成上表现出色。2,深度学习基础:熟悉神经网络、卷积神经网络(CNN)、Transformer等深度学习模型的基本原理。自然语言处理(NLP):了解文本编码、语言模型等NLP技术,因为Kolors在生成图像时需要理解并处理输
- (202402)多智能体MetaGPT入门2:AI Agent知识体系结构
早上真好
参与dw开源学习语言模型人工智能
文章目录前言1智能体定义2热门智能体案例3智能体的宏观机会4AIAgent与Sy1&Sy2观看视频前言感谢datawhale组织开源的多智能体学习内容,飞书文档地址在https://deepwisdom.feishu.cn/wiki/KhCcweQKmijXi6kDwnicM0qpnEf本章主要为Agent相关理论知识的学习。1智能体定义智能体=LLM+观察+思考+行动+记忆多智能体=智能体+环境
- 深入浅出PyTorch学习网址
今天是学习的一天
人工智能
https://datawhalechina.github.io/thorough-pytorch/
- Datawhale用免费GPU线上跑AI项目实践课程任务一学习笔记。部署ChatGLM3-6B模型
Hoogte-oile
学习笔记学习笔记人工智能自然语言处理
前言本篇文章为学习笔记,流程参照Datawhale用免费GPU线上跑AI项目实践课程任务,个人写此文章为记录学习历程和补充概念,并希望为后续的学习者开辟道路,没有侵权的意思。如有错误也希望大佬们批评指正。模型介绍ChatGLM-6B是一个开源的、支持中英双语问答的对话语言模型,基于GeneralLanguageModel(GLM)架构,具有62亿参数。结合模型量化技术,用户可以在消费级的显卡上进行
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟