在数组中找到第 k 小的数

在数组中找到第 k 小的数
【要求】

如果 arr 长度为 N,要求时间复杂度为 O(N),额外空间复杂度为 O(1)。


public static int[] getMinKNumByHeap(int[] arr, int k){
	if(k < 1 || k > arr.length){
		return arr;
	}
	int[] kHeap = new int[k];
	for(int i = 0; i != k; i++){
		heapInsert(kHeap, arr[i], i);
	}
	for(int i = k; i != arr.length; i++){
		if(arr[i] < kHeap[0]){
			kHeap[0] = arr[i];
			heapify(kHeap, 0, k);
		}
	}
	return kHeap;
}

public static void heapInsert(int[] arr, int value, int index){
	arr[index] = value;
	while(index != 0){
		int parent = (index - 1) / 2;
		if(arr[parent] < arr[index]){
			swap(arr, parent, index);
			index = parent;
		}else{
			break;
		}
	}
}

public static void heapify(int[] arr, int index, int heapSize){
	int left = index * 2 + 1;
	int right = index * 2 + 2;
	int largest = index;
	while(left < heapSize){
		if(arr[left] > arr[index]){
			largest = left;
		}
		if(right < heapSize && arr[right] > arr[largest]){
			largest = right;
		}
		if(largest != index){
			swap(arr, largest, index);
		}else{
			break;
		}
		index = largest;
		left = index * 2 + 1;
		right = index * 2 + 2;
	}
}

public static int[] getMinKNumByBFPRT(int[] arr, int k){
	if(k < 1 || k > arr.length){
		return arr;
	}
	int minKth = getMinKthByBFPRT(arr, k);
	int[] res = new int[k];
	int index = 0;
	for(int i = 0; i != arr.length; i++){
		if(arr[i ] < minKth){
			res[index++] = arr[i];
		}
	}
	for(; index != res.length; index++){
		res[index] = minKth;
	}
	return res;
} 

public static int getMinKthByBFPRT(int[] arr, int K){
	int[] copyArr = copyArray(arr);
	return select(copyArr, 0, copyArr.length - 1; k - 1);
}

public static int[] copyArray(int[] arr){
	int[] res = new int[arr.length];
	for(int i = 0; i != res.length; i++){
		res[i] = arr[i];
	}
	return res;
}

public static int select(int[] arr, int begin, int end, int i){
	if(begin == end){
		return arr[begin];
	}
 	int pivot = medianoOfMedians(arr, begin, end);
 	int[] pivotRange = partition(arr, begin, end, pivot);
 	if(i >= pivotRange[0] && i <= pivotRange[1]){
 		return arr[i];
 	}else if(i < pivotRange[0]){
 		return select(arr, begin, pivotRange[0] - 1, i);
 	}else{
 		return select(arr, pivotRange[1] + 1, end, i);
 	}
}

public static int medianoOfMedians(int[] arr, int begin, int end){
	int num = end = begin + 1;
	int offset = num % 5 == 0 ? 0 : 1;
	int[] mArr = new int[num / 5 + offset];
	for(int i = 0; i < mArr.length; i++){
		int beginI = begin + i *5;
		int endI = begin + 4;
		mArr[i] = getMedian(arr, beginI, Math.min(end, endI));
	}
	return select(mArr, 0, mArr.length - 1, mArr.length / 2);
}

public static int[] partition(int[] arr, int begin, int end, int pivotValue){
	int small = begin - 1;
	int cur = begin;
	int big = end + 1;
	while(cur != big){
		if(arr[cur] < pivotValue){
			swap(arr, ++small, cur++);
		}else if(arr[cur] > pivotValue){
			swap(arr, cur, --big);
		}else{
			cur++;
		}
	}
	int[] range = new int[2];
	range[0] = small + 1;
	range[1] = big - 1;
	return range;
}

public static int getMedian(int[] arr, int begin, int end){
	insertionSort(arr, begin, end);
	int sum = end + begin;
	int mid = (sum / 2) + (sum % 2);
	return arr[mid];
}

public static void insertionSort(int[] arr, int begin, int end){
	for(int i = begin + 1; i != end + 1; i++){
		for(int j = i; j != begin; j--){
			if(arr[j - 1] > arr[j]){
				swap(arr, j - 1, j);
			}else{
				break;
			}
		}
	}
}

public static void swap(int[] arr, index1, int index2){
	int tmp = arr[index];
	arr[index1] = arr[index2];
	arr[index2] = tmp;
}


你可能感兴趣的:(在数组中找到第 k 小的数)