CRNN由 Baoguang Shi, Xiang Bai, Cong Yao提出,2015年7月发表论文:“An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition”,链接地址:https://arxiv.org/abs/1507.05717v1
CRNN中训练数据的格式是LMDB,保存了两种数据,一种是图片数据,一种是标签数据,它们各有其key,如下所示:
数据集图片是若干带有文字的图片,文字的高度约占图片高度的80%~90%,数据集标签是txt文本格式,文本内容是图片上的文字,文本名字要跟图片名字一致,如123.jpg对应标签需要是123.txt。
例如有 01.jpg 和 02.jpg 两个样本,标签文件是 01.txt 和 02.txt :
# -*- coding: utf-8 -*-
import os
import lmdb # install lmdb by "pip install lmdb"
import cv2
import numpy as np
#from genLineText import GenTextImage
def checkImageIsValid(imageBin):
if imageBin is None:
return False
imageBuf = np.fromstring(imageBin, dtype=np.uint8)
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
if img is None:
return False
imgH, imgW = img.shape[0], img.shape[1]
if imgH * imgW == 0:
return False
return True
def writeCache(env, cache):
with env.begin(write=True) as txn:
for k, v in cache.iteritems():
txn.put(k, v)
def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):
"""
Create LMDB dataset for CRNN training.
ARGS:
outputPath : LMDB output path
imagePathList : list of image path
labelList : list of corresponding groundtruth texts
lexiconList : (optional) list of lexicon lists
checkValid : if true, check the validity of every image
"""
#print (len(imagePathList) , len(labelList))
assert(len(imagePathList) == len(labelList))
nSamples = len(imagePathList)
print '...................'
# map_size=1099511627776 定义最大空间是1TB
env = lmdb.open(outputPath, map_size=1099511627776)
cache = {}
cnt = 1
for i in xrange(nSamples):
imagePath = imagePathList[i]
label = labelList[i]
if not os.path.exists(imagePath):
print('%s does not exist' % imagePath)
continue
with open(imagePath, 'r') as f:
imageBin = f.read()
if checkValid:
if not checkImageIsValid(imageBin):
print('%s is not a valid image' % imagePath)
continue
########## .mdb数据库文件保存了两种数据,一种是图片数据,一种是标签数据,它们各有其key
imageKey = 'image-%09d' % cnt
labelKey = 'label-%09d' % cnt
cache[imageKey] = imageBin
cache[labelKey] = label
##########
if lexiconList:
lexiconKey = 'lexicon-%09d' % cnt
cache[lexiconKey] = ' '.join(lexiconList[i])
if cnt % 1000 == 0:
writeCache(env, cache)
cache = {}
print('Written %d / %d' % (cnt, nSamples))
cnt += 1
nSamples = cnt-1
cache['num-samples'] = str(nSamples)
writeCache(env, cache)
print('Created dataset with %d samples' % nSamples)
def read_text(path):
with open(path) as f:
text = f.read()
text = text.strip()
return text
import glob
if __name__ == '__main__':
#lmdb 输出目录
outputPath = '../data/lmdb/trainMy'
# 训练图片路径,标签是txt格式,名字跟图片名字要一致,如123.jpg对应标签需要是123.txt
path = '../data/dataline/*.jpg'
imagePathList = glob.glob(path)
print '------------',len(imagePathList),'------------'
imgLabelLists = []
for p in imagePathList:
try:
imgLabelLists.append((p,read_text(p.replace('.jpg','.txt'))))
except:
continue
#imgLabelList = [ (p,read_text(p.replace('.jpg','.txt'))) for p in imagePathList]
##sort by lebelList
imgLabelList = sorted(imgLabelLists,key = lambda x:len(x[1]))
imgPaths = [ p[0] for p in imgLabelList]
txtLists = [ p[1] for p in imgLabelList]
createDataset(outputPath, imgPaths, txtLists, lexiconList=None, checkValid=True)
# -*- coding: utf-8 -*-
import numpy as np
import lmdb
import cv2
with lmdb.open("../data/lmdb/train") as env:
txn = env.begin()
for key, value in txn.cursor():
print (key,value)
imageBuf = np.fromstring(value, dtype=np.uint8)
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
if img is not None:
cv2.imshow('image', img)
cv2.waitKey()
else:
print 'This is a label: {}'.format(value)