- 图片中的上采样,下采样和通道融合(up-sample, down-sample, channel confusion)
迪三
#图像处理_PyTorch计算机视觉深度学习人工智能
前言以conv2d为例(即图片),Pytorch中输入的数据格式为tensor,格式为:[N,C,W,H,W]第一维N.代表图片个数,类似一个batch里面有N张图片第二维C.代表通道数,在模型中输入如果为彩色,常用RGB三色图,那么就是3维,即C=3。如果是黑白的,即灰度图,那么只有一个通道,即C=1第三维H.代表图片的高度,H的数量是图片像素的列数第四维W.代表图片的宽度,W的数量是图片像素的
- 如何从大型语言模型(LLM)流式响应
aehrutktrjk
语言模型microsoftajaxpython
引言随着大型语言模型(LLM)的不断发展,我们不仅能够获得高质量的文本生成结果,还可以实时观察模型生成文本的过程。流式响应允许我们以一种更加交互和动态的方式与LLM进行交互,这在某些应用场景中非常有用。在本文中,我们将探讨如何从LLM流式获取响应。基础知识在开始之前,我们需要了解一些基础概念。所有的LLM都实现了Runnable接口,该接口提供了一些默认实现的标准方法,如invoke、batch、
- seq_len 不等于 hidden_size 难道不会报错吗,他们是一会事情吗
zhangfeng1133
python人工智能开发语言pytorch
seq_len与hidden_size在RNN中代表不同概念,不等不会报错。seq_len:序列长度,表示在处理数据时,每个批次(batch)中序列的长度。RNN网络会按照seq_len指定的长度进行循环计算1。hidden_size:隐藏层中隐藏神经元的个数,也是输出向量的长度。它决定了RNN网络中隐藏层的状态向量的维度12。在RNN的训练过程中,seq_len和hidden_si
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- ‘float‘ object cannot be interpreted as an integer
多欢喜
深度学习进阶课程error
今天写代码的时候遇到了新的问题:'float'objectcannotbeinterpretedasaninteger代码出错地方:forminibatch_indexinrange(num_training_batches):找到num_traininng_batches:num_training_batches=size(training_data)/mini_batch_size理论上感觉没
- Unity3D GPUDriven渲染详解
Thomas_YXQ
开发语言Unity3D架构游戏Unity
前言Unity3D中的GPUDriven渲染技术是一种通过最大化GPU的利用,减少CPU负担,从而提高渲染效率和帧率的方法。其核心思想是将更多的渲染任务转移到GPU上,充分利用现代图形硬件(显卡)的性能。以下是该技术的几个关键组件和它们的作用:对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!1.BatchRendererGroup(BRG)BRG是Unity中用于批处理渲
- 华为eNSP常用命令整合-视图种类-划分vlan
S+叮当猫
华为网络智能路由器
视图种类和切换:三种视图①用户视图---默认状态下为用户视图,快捷键ctrl+z切换为用户视图②系统视图---[主机名]命令system-view进入系统视图,使用快捷键ctrl+z从系统视图切换回用户视图③接口视图---[主机名-接口名]在系统视图下,输入接口号,进入接口视图第一部分:划分vlan1.创建vlan:vlanbatch23---创建两个vlan,vlan1和vlan2(不要创建名字
- 获取视频长度
AI算法网奇
python基础python开发语言
fromdecordimportVideoReadersys.path.insert(0,'/home/model-server/dev/data_platform/processors')fromaestheticimportget_aesthetic_model,get_aesthetic_score_batch_queuefrommytools.utilsimportprint_with_t
- ssm——整合,前端页面设计,分页
2401_86367399
面试辅导大厂内推前端java开发语言
empMapper.updateEmpById(m);}//用于批量的插入数据@TestpublicvoidinsertDeptByBATCH(){DeptMapperOCM=sqlSession.getMapper(DeptMapper.class);for(inti=0;iindex.jsp页面发送出查询信息列表的请求->EmpController来接受请求,然后查询出员工数据->跳转到lis
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- pytorch矩阵乘法
weixin_45694975
pytorch深度学习神经网络
一、torch.bmminput1shape:(batch_size,seq1_len,emb_dim)input2shape:(batch_size,emb_dim,seq2_len)outputshape:(batch_size,seq1_len,seq2_len)注意:torch.bmm只适合三维tensor做矩阵运算特别地,torch.bmm支持tenso广播运算input1shape:(
- 【Python机器学习】循环神经网络(RNN)——传递数据并训练
zhangbin_237
Python机器学习机器学习pythonrnn人工智能开发语言深度学习神经网络
与其他Keras模型一样,我们需要向.fit()方法传递数据,并告诉它我们希望训练多少个训练周期(epoch):model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test))因为个人小电脑内存不足,所以吧maxlen参数改成了100重新运行。保存模型:model_struc
- 李沐55_循环神经网络RNN简洁实现——自学笔记
Rrrrrr900
rnn深度学习神经网络pytorch循环神经网络python李沐
读取《时间机器》数据集!pipinstalld2l!pipinstall--upgraded2l==0.17.5#d2l需要更新importtorchfromtorchimportnnfromtorch.nnimportfunctionalasFfromd2limporttorchasd2lbatch_size,num_steps=32,35train_iter,vocab=d2l.load_da
- Pytorch维度转换操作:view,reshape,permute,flatten函数详解
ghx3110
深度学习笔记pytorch维度转换操作
引言Pytorch中常见的维度转换函数有view,reshape,permute,flatten。本文将详细介绍这几个函数的作用与使用方式,并给出了具体的代码示例,希望能够帮助大家。常见的维度有四维:比如(batch,channel,height,width);三维:比如(b,n,c);二维:比如(h,w)。下面介绍如何使用上述函数进行维度之间的转换。1.view函数作用tensor.view()
- pytorch计算网络参数量和Flops
Mr_Lowbee
PyTorchpytorch深度学习人工智能
fromtorchsummaryimportsummarysummary(net,input_size=(3,256,256),batch_size=-1)输出的参数是除以一百万(/1000000)M,fromfvcore.nnimportFlopCountAnalysisinputs=torch.randn(1,3,256,256).cuda()flop_counter=FlopCountAna
- linux多个sh 同时执行命令,sh, 批量执行Linux命令
一颗橙子君
linux多个sh同时执行命令
step1:创建一个sh批处理命令文件#vim/etc/batch_ssh/install_redis.shstep2:给当前用户,能够执行sh脚本权限#chmodinstall_redis.sh777step3:编写要批量执行的命令,read表示等待前端用户输入,sleep表示等待时间单位为秒。echo'\nbegintoinstall01plugin\n';yuminstallcpp-y;ec
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- SQL进阶技巧:截止当前批次前的批次量与订单量 | 移动窗口问题
莫叫石榴姐
数字化建设通关指南#SQL进阶实战技巧sql数据库大数据数学建模hive数据仓库数据分析
目录0场景描述1数据准备2问题分析3小结0场景描述表A有如下字段,userid(用户ID),batchid(批次ID),orderid(订单ID),createtime(创建时间),同一个用户ID下有多个批次,同一个批次下有多个订单ID,相同批次ID的创建时间是相同的,创建时间精确到了秒。统计,截止对应批次ID的时间点前,该用户下有多少个批次ID,有多少个订单ID,输出的字段应该为用户ID批次ID
- 【已解决】Halcon错误代码4104
聪明不喝牛奶
深度学习Halcon+CSharphalcon深度学习
问题描述在运行的时候发现报错4104,如下图所示解决从字面上理解就是超出了计算机的内存空间了,那么着手解决的话就需要把没次训练的张数减少一些即可。去相对应的修改batch_size即可。结果如下图所示,正常在使用GPU训练。搞定,手工~
- Java一分钟之-Spring Batch:批量处理框架
Jimaks
后端javaspringbatch
在企业级应用开发中,批量数据处理是一项常见且关键的任务,它涉及到大规模数据的导入、导出、转换等操作。SpringBatch,作为Spring家族的一员,专为此类需求设计,提供了一套强大且灵活的批处理框架。本文旨在深入浅出地介绍SpringBatch的基础、常见问题、易错点及其规避策略,并配以实用的代码示例,帮助开发者高效利用这一工具。SpringBatch简介SpringBatch旨在简化批量处理
- Python请求数据,r = response.json(),提取字段报TypeError: list indices must be integers or slices, not str[已解决]
qq_41845402
pythonjson开发语言
#encoding:utf-8r={"atomicElapsed":74,"data":{"pageCount":0,"pageData":[{"batchLock":0,"batchNo":"882211080000016","companyCode":"CRV","createTime":"2022-11-0818:44:11","crowdWorkerID":""}]},"hystrixEl
- Kafka高性能揭秘 —— sequence IO、PageCache、SendFile的应用详解
大数据学习与分享
Kafkakafka大数据java
大家都知道Kafka是将数据存储于磁盘的,而磁盘读写性能往往很差,但Kafka官方测试其数据读写速率能达到600M/s,那么为什么Kafka性能会这么高呢?首先producer往broker发送消息时,采用batch的方式即批量而非一条一条的发送,这种方式可以有效降低网络IO的请求次数,提升性能。此外这些批次消息会"暂存"在缓冲池中,避免频繁的GC问题。批量发送的消息可以进行压缩并且传输的时候可以
- EFUtilities批量处理
威威当爸了
SQL前端服务器javascript
nutgetEFUtilities批量插入 EFBatchOperation.For(con,con.SnPrints).InsertAll(snprintList);插量更新 using(Database.EF.Contextcon=newDatabase.EF.Context()) { varcc=con.SnPrints.Where(o=>o.Ser
- 自动安装第三方库python,python第三方库自动安装脚本
杏仁菌子
自动安装第三方库python
#python第三方库自动安装脚本,需要在cmd中运行此脚本#BatchInstall.pyimportoslibs={"numpy","matplotlib","pillow","sklearn","requests",\"jieba","beautifulsoup4","wheel","networkx","sympy",\"pyinstaller","django","flask","wer
- YOLOv8模型参数详解
AdaCoding
YOLOv8改进系列YOLO目标检测
YOLOv8模型参数详解task:任务类型,通常为detect(检测)。mode:模式,train表示训练模式。model:模型配置文件的路径,指定了YOLOv8模型的结构。data:数据集配置文件的路径,包含了训练集和验证集的信息。epochs:训练的轮数。patience:早期停止的耐心值,表示在没有进一步改进后多少轮后停止训练。batch:批处理大小,即每次前向和后向传播使用的样本数。img
- 十个常见的 Python 脚本 (详细介绍 + 代码举例)
途途途途
pythonspring前端
1.批量重命名文件介绍:该脚本用于批量重命名指定目录下的文件,例如将所有".txt"文件重命名为".md"文件。import osdef batch_rename(directory, old_ext, new_ext): """批量重命名文件扩展名。 Args: directory: 要处理的目录路径。 old_ext: 要替换的旧扩展名。 new_ext: 要替换的新扩展名。
- 深度学习100问51:什么是mini-batch
不断持续学习ing
自然语言处理机器学习人工智能
嘿,你知道吗?在机器学习的奇妙世界里,有个超厉害的家伙叫mini-batch,它就像是一个小魔法包。想象一下,你有一个超级大的宝箱,里面装满了各种宝贝数据。但如果一下子把整个宝箱抬起来去训练模型,那可就太累啦,而且可能还会把电脑累趴下。这时候,mini-batch就闪亮登场啦!它从大宝箱里挑出一小部分宝贝,组成一个小魔法包。这个小魔法包有啥用呢?首先呀,它让计算变得轻松多啦!就好比你不用一次性搬起
- 语义分割训练精度计算
南太湖小蚂蚁
人工智能深度学习人工智能
语义分割训练的output结果一般是[batch_size,num_classes,width,height]这样的形式,而label的结果一般是[batch_size,width,height],类似如下形状,outputs:[4,6,480,320],而真值label:[4,480,320]。由于维度不同,无法直接比较,所以这两者要比较就要采取一点方法。output里面每个类型都有一个值,要取
- DBUtils 框架的中batch批处理使用
qq_35866738
一、DBUtils框架的使用1、使用dbutils做增删改查,批处理以及大文本操作2、使用DBUtils框架管理事务。(模拟银行转账)二、使用JDBC操作多个表1、一对多(部门与员工)2、多对多(学生和老师学生与课程)3、一对一(人和身份证)三、关于Oracle数据对于二进制数据的存取(面试题)一、DBUitls框架的使用/***使用dbutils做增删改查批处理大文本操作*@author吕鹏**
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$