1,大作业
(1)读取清洗分词
import os import numpy as np import sys from datetime import datetime import gc #倒入替换路径 path = r'C:\Users\WZZ\Desktop\147' #倒入结巴 import jieba #导入停用词 with open(r'F:\数据挖掘\stopsCN.txt', encoding='utf-8') as f: stopwords = f.read().split('\n') #print(stopwords.shape)#查看停用的字符数量 # for w in stopwords:#查看stopwords文件数据 # print(w) #文本预处理 def processing(tokens): tokens = "".join([char for char in tokens if char.isalpha()])# 去掉非字母汉字的字符 tokens = [token for token in jieba.cut(tokens, cut_all=True) if len(token) >= 2]#结巴分词 tokens = " ".join([token for token in tokens if token not in stopwords])# 去掉停用词 return tokens tokenList = [] targetList = [] for root, dirs, files in os.walk(path): # print(root)#地址 # print(dirs)#子目录 # print(files)#详细文件名 for f in files: filePath = os.path.join(root, f)#地址拼接 with open(filePath, encoding='utf-8') as f: content = f.read() #获取类别标签 target = filePath.split('\\')[-2] targetList.append(target) tokenList.append(processing(content)) print( tokenList)
(2)预测评估
#建模 from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.model_selection import cross_val_score from sklearn.metrics import classification_report x_train, x_test, y_train, y_test = train_test_split(tokenList, targetList, test_size=0.3, stratify=targetList) #转化特征向量 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(x_train) X_test = vectorizer.transform(x_test) from sklearn.naive_bayes import MultinomialNB #贝叶斯预测种类 mnb = MultinomialNB() module = mnb.fit(X_train, y_train) y_predict = module.predict(X_test) scores = cross_val_score(mnb, X_test, y_test, cv=5) print("验证结果:%.3f" % scores.mean()) print("分类结果:\n", classification_report(y_predict, y_test))
(3).对比
import collections # 测试集和预测集的各类新闻数量 testCount = collections.Counter(y_test) predCount = collections.Counter(y_predict) print('实际:', testCount, '\n', '预测', predCount) # 建立标签列表,实际结果与预测结果 nameList = list(testCount.keys()) testList = list(testCount.values()) predictList = list(predCount.values()) x = list(range(len(nameList))) print("类别:", nameList, '\n', "实际:", testList, '\n', "预测:", predictList)
(4).图像对比
# 画图 import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定字体 plt.figure(figsize=(7,5)) total_width, n = 0.6, 2 width = total_width / n plt.bar(x, testList, width=width,label='实际',fc = 'blue') for i in range(len(x)): x[i] = x[i] + width plt.bar(x, predictList,width=width,label='预测',tick_label = nameList,fc='r') plt.grid() plt.title('实际和预测对比图',fontsize=17) plt.xlabel('新闻类别',fontsize=17) plt.ylabel('频数',fontsize=17) plt.legend(fontsize =17) plt.tick_params(labelsize=15) plt.show()
2-boston房价预测
# 1.读取数据集 from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split data = load_boston # 2.训练集与测试集划分 x_train, x_test, y_train, y_test = train_test_split(data.data,data.target,test_size=0.3) #3.线性回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏。 #建立模型 from sklearn.linear_model import LinearRegression mlr = LinearRegression() mlr.fit(x_train,y_train) print('系数',mlr.coef_,"\n截距",mlr.intercept_) 复制代码 #检测模型好坏 from sklearn.metrics import regression y_predict = mlr.predict(x_test) print('线性回归模型:') print("预测的均方误差:",regression.mean_squared_error(y_test,y_predict)) print("预测的平均绝对误差:",regression.mean_absolute_error(y_test,y_predict)) print("模型的分数:",mlr.score(x_test,y_test))
#4.多项式回归模型:建立13个变量与房价之间的预测模型,并检测模型好坏 from sklearn.preprocessing import PolynomialFeatures # 多项式化 poly2 =PolynomialFeatures(degree=2) x_poly_train = poly2.fit_transform(x_train) x_poly_test = poly2.transform(x_test) # 建立模型 mlrp = LinearRegression() mlrp.fit(x_poly_train, y_train) # 测模型好坏 y_predict2 = mlrp.predict(x_poly_test) print("多项式回归模型:") print("预测的均方误差:",regression.mean_squared_error(y_test,y_predict2)) print("预测平均绝对误差:",regression.mean_absolute_error(y_test,y_predict2)) print("模型的分数:",mlrp.score(x_poly_test,y_test))
#5.比较线性与非线性性能 多项式回归模型误差比线性模型小,而且是一条平滑的曲线,对样本的拟合程度较高