主要要点:
Scala模式匹配彻底详解
Scala类型系统彻底详解
Spark源码阅读及作业
一.Scala模式匹配彻底详解
Scala中的模式匹配类似于java中的switch case ,但是switch case是对值进行匹配,操作的对象也是值。
Scala:1.对值可以进行匹配;2.对类型进行匹配;3.对集合: map,list里面的元素进行匹配。
1.1 值匹配
scala> def bigData(data:String){ //data为匹配对应值
| data match{ //类似Java中的switch
| case "Spark" => println("Wow...")
| case "Hadoop" => println("Ok")
| case _ => println("Something others")
// _ 表示不满足上述的所有情况
| }
| }
bigData: (data: String)Unit
//这时候返回的值的类型是Unit,因为println的返回类型是Unit
scala> bigData("Hadoop")
//匹配之后程序就结束了,不会往下执行的
Ok
case _ if data == "Flink" => println("Cools")
//可以在case后面加入判断语句,加上守卫,双重判断
case data_ if data_ == "Flink" => println("Cools")
//可以将变量赋值,设置一个变量 data_ 在匹配的时候将data的值赋值给data_,然后再判断
scala> bigData("Flink")
Cools
1.2 类型匹配
scala> import java.io._
import java.io._
scala> :paste
// Entering paste mode (ctrl-D to finish)
def exception(e: Exception){ //Exception 为匹配对应类型
e match{
case fileException:FileNotFoundException => println("File not found :"+ fileException)
case _: Exception => println("Exception getting thread dump from executor $executorId",e)}
}
// Exiting paste mode, now interpreting.
exception: (e: Exception)Unit
scala> exception(new FileNotFoundException("OPP!!!"))
File not found :java.io.FileNotFoundException: OPP!!!
1.3 集合匹配
scala> def data(array:Array[String]){
| array match{
| case Array("Scala") => println("Scala")
//以指定元素,进行匹配
| case Array(spark,hadoop,flink) => println(spark + "+" + hadoop + "+" + flink)
//指定元素的个数,不需要指定元素的类型
| case Array("Spark",_*) => println("Spark....")
//以指定的元素开头。_*代表其他不定个数的任何元素
| case _ => println("Unknown")
| }
| }
data: (array: Array[String])Unit
scala> data(Array("Scala"))
//输入Scala单元素数组
Scala
scala> data(Array("Spark","Hadoop","Flink"))
//输入任意三个元素
Spark+Hadoop+Flink
scala> data(Array("Spark","Scala","Kafka"))
//同时符合两个case时,优先执行在前的case
Spark + Scala + Kafka
scala> data(Array("Spark","Scala"))
Spark....
1.4 case class 匹配(样例类)
用于消息的封装,并发编程的消息通信。
scala> case class Person(name:String)
defined class Person
只定义属性,由scala的编译器自动编译的时候提供getter和setter方法,会生成case class伴生对象case Object,class Person背后会有 Object Person里面会有编译器会自动为你生成apply方法,Person(“Spark”)参数里面的内容”Spark”会传递给apply作为参数,apply接收到这个具体内容之后就会为我们创建实际的case class对象。
//把参数传入Person类中,编译器会调用apply方法,会返回case class Person的实例
scala> case class Person(name:String)
defined class Person
scala> Person("Spark")
res8: Person = Person(Spark)
scala> class Person
defined class Person
//在主构造器,传入的参数不需要val定义,默认只读成员,默认的会加入val。
scala> case class Worker(name:String,salary:Double) extends Person
defined class Worker
scala> case class Student(name:String,score:Double) extends Person
defined class Student
scala> def sayHi(person : Person){
| person match{
//直接接收变量的参数,然后右边是具体操作
| case Worker(name,score) => println("I am a worker :" + name + score)
| case Student(name,salary) => println("I am a student :" + name + salary)
| case _ => println("Unknown")
| }
| }
sayHi: (person: Person)Unit
scala> sayHi(Worker("Spark",6.5))
I am worker :Spark6.5
scala> sayHi(Student("Spark",6.6))
I am a student :Spark6.6
二.类型参数—泛型类和泛型函数
// class Person[T]泛型类T类型的
scala> class Person[T](val content : T){
| def getContent(id : T) = id + "_" + content
| }
defined class Person
//这里面指定(content)类型为String,那么后面传入的参数一定要是String类型的。
scala> val p = new Person[String]("Spark")
p: Person[String] = Person@15e8f9b2
//传入的(id)参数一定要是String类型的,因为前面指定了类型。
scala> p.getContent("Scala")
res11: String = Scala_Spark
//参数不是String所以报错
scala> p.getContent(100)
<console>:13: error: type mismatch;
found : Int(100)
required: String
p.getContent(100)
三.上边界和下边界
例如,某公司要招聘大数据工程师,大数据工程师本身是一个泛型,它本身包含了很多,但是如果你要限定它的类型,这时候你就需要边界,例如说,这个工程师必须要掌握Spark,可能除了Spark技术之外还需要掌握其他的,这个就是子类的事了,这就是边界,很多时候对类型也要限定边界,如果我们指定了类型的上边界。那么所有的类型必须是上边界的类型或者是其子类型,这个时候我们就确认在内部方法调用的时候,一定有父类的某种方法,例如,Spark工程师,它一定会Spark,至于其他功能就是子类的事了。
上边界: <:
_ 代表的一定是CompressionCodec的类型,或者是其子类型,这就确保了CompressionCodec里面有啥方法,子类型一定可以调用。
def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec])
下边界: >: 指定了泛型类型必须是某个类型的父类,或者说是这个类的本身。
四.View Bounds—视图界定
语法:<% 对类型进行隐式转换implicit
scala> class Compare[T : Ordering](val n1:T , val n2 : T){
| def bigger(implicit ordered : Ordering[T]) = if(ordered.compare(n1,n2) > 0) n1 else n2
| }
defined class Compare
scala> new Compare[Int](8,3).bigger
res14: Int = 8
scala> new Compare[String]("Spark","Hadoop").bigger
res15: String = Spark //S 排在 H 后面
scala> Ordering[String]
res16: scala.math.Ordering[String] = scala.math.Ordering$String$@c262f2f
scala> Ordering[Int]
res17: scala.math.Ordering[Int] = scala.math.Ordering$Int$@1bb96449
T:ClassTag
* scala> def mkArray[T : ClassTag](elems: T*) = Array[T](elems: _*)
* mkArray: [T](elems: T*)(implicit evidence$1: scala.reflect.ClassTag[T])Array[T]
*
* scala> mkArray(42, 13)
* res0: Array[Int] = Array(42, 13)
*
* scala> mkArray("Japan","Brazil","Germany")
* res1: Array[String] = Array(Japan, Brazil, Germany)
作业:阅读Spark源码RDD,HadoopRDD,SparkContext,Master,Worker的源码,并分析里面使用的所有的模式匹配和类型参数的内容
RDD源码阅读
Some是一个case class样例类,对类进行匹配,ReliableRDDCheckpointData[_]就相当于ReliableRDDCheckpointData[T]
case _ 其中 _ 表示任何,当前面都没有匹配成功的时候就会执行他。
checkpointData match {
case Some(_: ReliableRDDCheckpointData[_]) => logWarning(
"RDD was already marked for reliable checkpointing: overriding with local checkpoint.")
case _ =>
}
case直接对值进行匹配
case 0 => Seq.empty
case 1 =>
val d = rdd.dependencies.head
debugString(d.rdd, prefix, d.isInstanceOf[ShuffleDependency[_, _, _]], true)
case _ =>
case对指定参数进行匹配
case (desc: String, 0) => s"$partitionStr $desc"
case (desc: String, _) => s"$nextPrefix $desc"
case对数组进行匹配
case Array(t) => t
case _ => throw new UnsupportedOperationException("empty collection")
泛型函数JavaRDD[T]函数的返回类型T
def toJavaRDD() : JavaRDD[T] = {
new JavaRDD(this)(elementClassTag)
}
implicit def rddToAsyncRDDActions[T: ClassTag](rdd: RDD[T]): AsyncRDDActions[T] = {
new AsyncRDDActions(rdd)
}
HadoopRDD源码阅读
case 对异常进行匹配
case eof: EOFException =>
finished = true
case e: Exception =>
if (!ShutdownHookManager.inShutdown()) {
logWarning("Exception in RecordReader.close()", e)
SparkContext源码阅读
case可以对函数进行匹配
case NonFatal(e) =>
logError("Error initializing SparkContext.", e)
case对匿名函数的匹配
val data = br.map { case (k, v) =>
val bytes = v.getBytes
assert(bytes.length == recordLength, "Byte array does not have correct length")
case对字符串进行匹配
case "local" => "file:" + uri.getPath
case _ =>
new ReliableCheckpointRDD[T]泛型类,泛型类T类型的
protected[spark] def checkpointFile[T: ClassTag](path: String): RDD[T] = withScope {
new ReliableCheckpointRDD[T](this, path)
}
泛型
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: Iterator[T] => U,
partitions: Seq[Int]): Array[U] = {
val cleanedFunc = clean(func)
runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
Master源码阅读
对case class和case object进行匹配
case RequestMasterState => {
context.reply(MasterStateResponse(
address.host, address.port, restServerBoundPort,
workers.toArray, apps.toArray, completedApps.toArray,
drivers.toArray, completedDrivers.toArray, state))
}
case BoundPortsRequest => {
context.reply(BoundPortsResponse(address.port, webUi.boundPort, restServerBoundPort))
}
case RequestExecutors(appId, requestedTotal) =>
context.reply(handleRequestExecutors(appId, requestedTotal))
case KillExecutors(appId, executorIds) =>
val formattedExecutorIds = formatExecutorIds(executorIds)
context.reply(handleKillExecutors(appId, formattedExecutorIds))
Worker源码阅读
对特定参数进行匹配
case (executorId, _) => finishedExecutors.remove(executorId)
case (driverId, _) => finishedDrivers.remove(driverId)
将值赋值给_result,然后执行后面操作
case pattern(_result) => _result.toBoolean