1.安装最新版tf--tensorflow1.5,gpu版本需要CUDA8和cudnn6,命令如下
GPU版:sudo pip3 install tf-nightly-gpu
CPU版:sudo pip3 install tf-nightly
对应pip网站:https://pypi.python.org/pypi/tf-nightly-gpu
2.编写代码进行测试,主要包括可导函数square和不可导函数floor
代码参考网站https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html
代码示例:
import numpy as np
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
def floor(x):
return tf.floor(x)
def square(x):
return tf.multiply(x, x)
grad_f = tfe.gradients_function(floor)
print(floor(3.))
print('gradient of floor:',grad_f(3.))
grad_s = tfe.gradients_function(square)
print(square(3.))
print('gradient of square:',grad_s([3.]))
代码输出:
tf.Tensor(3.0, shape=(), dtype=float32)
gradient of floor: [None]
tf.Tensor(9.0, shape=(), dtype=float32)
gradient of square: [
3.小结
可以看出,floor函数对应的梯度为None,而square函数对应的梯度为 derivative(x^2)=2*x|x=3=6
福利区:独学而无友,则孤陋而寡闻.加入机器学习与深度学习讨论QQ群(581789266),一块交流与探讨,共同成长和进步!