NOIP复赛复习(三)文件读写与数论模板

文件读入读出

假设题目名为“add”,那么文件夹名为“add”c++程序名为“add.cpp”,读入文件名为“add.in”,输出文件名为“add.out”。四个的拼写均不可有误,包括大小写差异。千万不要调试后就忘记修改文件读入读出了。 

#include

int main(){

   freopen("add.in","r",stdin);//read

   freopen("add.out","w",stdout);//write

}




数论算法

1、线性筛

#include

#include

#include

#include

using namespace std;

const int maxn=200005;

int prime[maxn];

bool not_prime[maxn];

int main()

{

    int n,cnt=0;

   scanf("%d",&n);

   memset(not_prime,0,sizeof(not_prime));

   not_prime[1]=true;

    for(inti=2;i<=n;i++)

    {

       if(!not_prime[i])

           prime[++cnt]=i;

        for(intj=1;j<=cnt;j++)

        {

           if(prime[j]*i>n)    break;

           not_prime[prime[j]*i]=true;

            if(i%prime[j]==0) break;

        }

    }

    for(inti=1;i<=cnt;i++)

       printf("%d ",prime[i]);

    return 0;

}

 

2、埃氏筛

#include

#include

#include

#include

using namespace std;

inline int read()

{

    char c;

    c=getchar();

   for(;c>'9'||c<'0';c=getchar());

    int sum=0;

   for(;c<='9'&&c>='0';c=getchar())sum=sum*10+c-48;

    return sum;

}

int n,m;

bool f[10010000];

int main()

{

   n=read(),m=read();

   memset(f,true,sizeof(f));

   f[0]=f[1]=false;

    for(inti=2;i<=n;i++)

    if(f[i])

    for(intj=2;i*j<=n;f[i*j]=false,j++);

    for(inti=1;i<=m;i++)

    {

        int x;

        x=read();

       if(f[x])printf("Yes\n");

        elseprintf("No\n");

    }

    return 0;

}

 

3、拓展欧几里得算法

#include

#include

#include

#include

using namespace std;

int x,y;

int exgcd(int a,int b)

{

    if(!b)

    {

        x=1;

        y=0;

        return a;

    }

    else

    {

        int t;

        intd=exgcd(b,a%b);

        t=x;

        x=y;

        y=t-a/b*x;

        return d;

    }

}

int main()

{

    int a,b;

   scanf("%d%d",&a,&b);

    exgcd(a,b);

// cout<<__gcd(a,b)<

   cout<

    return 0;

}

 

4GCD&LCM

#include

#include

#include

using namespace std;

int gcd(int a,int b)

{

    if(!b) returna;

    else returngcd(b,a%b);

}

int lcm(int a,int b)

{

    returna/gcd(a,b)*b;

}

int main()

{

    int a,b;

   scanf("%d%d",&a,&b);

   cout<

    return 0;

}

 

5、分解质因数

#include

#include

#include

using namespace std;

int main()

{

    long long n;

   scanf("%lld",&n);

    for(long longi=2;i<=n;i++)

    {

        while(n!=i)

        {

           if(n%i==0)

            {

                printf("%lld*",i);

               n=n/i;             

            }

            elsebreak;

        }

    }

   printf("%lld",n);

    return 0;

}

 

6、大数翻倍法

#include

#include

#include

using namespace std;

int a[233],mo[233];

int gcd(int a,int b)

{

    if(!b) returna;

    else returngcd(b,a%b);

}

int lcm(int a,int b)

{

    returna/gcd(a,b)*b;

}

int main()

{

    int n;

   scanf("%d",&n);

    for(inti=1;i<=n;i++)

       scanf("%d%d",&a[i],&mo[i]);

    intans=0,nowmo=1;

    for(inti=1;i<=n;i++)

    {

        intother=a[i],othermo=mo[i];

       if(othermo>nowmo)

        {

           swap(ans,other);

           swap(nowmo,othermo);

        }

       while(ans%othermo!=other)

           ans+=nowmo;

       nowmo=lcm(nowmo,othermo);

    }

   printf("%d",ans);

}

 

7、快速幂

#include    

using namespace std;    

const int MOD = 1007;    

int xx(int a,int n,int MOD) 

{    

    int ret=1;    

    int tmp=a%MOD;    

    while(n)    

    {    

        if(n&1)    

            ret=ret*tmp%MOD;    

        tmp=tmp*tmp%MOD;    

        n>>=1;    

    }    

    return ret;    

}    

int main()    

{    

    int m,n;    

    while(scanf("%d%d",&m,&n)==2)    

    {    

        printf("%d\n",xx(m,n,MOD));    

    }    

}    

 

8、位运算

功能

示例

位运算

去掉最后一位

(101101->10110)

x >> 1

在最后加一个0

(101101->1011010)

x  << 1

在最后加一个1

(101101->1011011)

x << 1+1

把最后一位变成1

(101100->101101)

x  | 1

把最后一位变成0

(101101->101100)

x | 1-1

最后一位取反

(101101->101100)

x  ^ 1

把右数第k位变成1

(101001->101101,k=3)

x | (1 << (k-1))

把右数第k位变成0

(101101->101001,k=3)

x  & !(1 << (k-1))

右数第k位取反

(101001->101101,k=3)

x ^ (1 << (k-1))

取末三位

(1101101->101)

x  & 7

取末k

(1101101->1101,k=5)

x & (1<< k -1)

取右数第k

(1101101->1,k=4)

x  >> (k-1) & 1

把末k位变成1

(101001->101111,k=4)

x | (1 << k-1)

k位取反

(101001->100110,k=4)

x  ^ (1 << k-1)

把右边连续的1变成0

(100101111->100100000)

x & (x+1)

把右起第一个0变成1

(100101111->100111111)

x  | (x+1)

把右边连续的0变成1

(11011000->11011111)

x | (x-1)

取右边连续的1

(100101111->1111)

(x  ^ (x+1)) >> 1

去掉右起第一个1的左边

(100101000->1000)

x & (x ^ (x-1))

你可能感兴趣的:(noi,考试技巧)