Spark本地模式与Spark Standalone伪分布模式

红字部分来源于:董的博客

目前Apache Spark支持三种分布式部署方式,分别是standalone、spark on mesos和 spark on YARN,其中,第一种类似于MapReduce 1.0所采用的模式,内部实现了容错性和资源管理,后两种则是未来发展的趋势,部分容错性和资源管理交由统一的资源管理系统完成:让Spark运行在一个通用的资源管理系统之上,这样可以与其他计算框架,比如MapReduce,公用一个集群资源,最大的好处是降低运维成本和提高资源利用率(资源按需分配)。


spark的本地模式类似于hadoop的单机模式,是为了方便我们调试或入门的。

1.先去官网下载下来http://spark.apache.org/downloads.html,不要下错了,下载pre-built(这是已经编译好了,产生了二进制文件的)for 你的hadoop版本。

Spark本地模式与Spark Standalone伪分布模式_第1张图片

不过还要注意一点,打开http://spark.apache.org/documentation.html

Spark本地模式与Spark Standalone伪分布模式_第2张图片

选择你下载的版本,进去之后看一下它所相求的java等版本,最好按它要求来,要不然会出现很多问题。

Spark本地模式与Spark Standalone伪分布模式_第3张图片


2.先用下local spark-shell,写个scala版的wordcount

快速开始:http://spark.apache.org/docs/latest/quick-start.html

什么都不用配,直接启动spark-shell就可以了。如果之后你搭好了集群,在spark-shell后加上master的url就是在集群上启动了。

guo@guo:~$ cd /opt/spark-1.6.1-bin-hadoop2.6/
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ bin/spark-shell

启动spark-shell时自动生成了sparkcontext对象sc

scala> val testlog=sc.textFile("test.log")
testlog: org.apache.spark.rdd.RDD[String] = test.log MapPartitionsRDD[5] at textFile at :27
#看一下第一行
scala> testlog.first
res2: String = hello world
统计下总行数,无参的方法可以不写()
scala> testlog.count
res4: Long = 3
#看一下前三行,take()方法返回一个数组
scala> testlog.take(3)
res5: Array[String] = Array(hello world, hello kitty, hello guo)
主要代码就是下面这一行

scala> val wordcount=testlog.flatMap(line=>line.split(" ")).map(word=>(word,1)).reduceByKey((a,b)=>a+b)
wordcount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[8] at reduceByKey at :29
collect方法返回的是一个数组

scala> wordcount.collect
res6: Array[(String, Int)] = Array((hello,3), (world,1), (guo,1), (kitty,1))
遍历一下这个数组

scala> wordcount.collect.foreach(println)
(hello,3)
(world,1)
(guo,1)
(kitty,1)

Ctrl+D或:q退出spark shell

或者直接在idea里运行

/**
  * Created by guo on 16-4-24.
  */
import org.apache.spark.{SparkContext,SparkConf}
object WordCount {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("wordcount").setMaster("local")
    val sc = new SparkContext(conf)
    val textFile = sc.textFile("/home/guo/test.log")
    val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey((a,b) => a+b)
    wordCounts.collect().foreach(println)
    sc.stop()
  }
}


是不是要爱上scala了!


3.伪分布模式

启动master

guo@guo:~$ cd /opt/spark-1.6.1-bin-hadoop2.6/
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ sbin/start-master.sh 
starting org.apache.spark.deploy.master.Master, logging to /opt/spark-1.6.1-bin-hadoop2.6/logs/spark-guo-org.apache.spark.deploy.master.Master-1-guo.out
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ jps
2323 NameNode
3187 NodeManager
5204 Jps
2870 ResourceManager
2489 DataNode
2700 SecondaryNameNode
5116 Master
启动master之后查看进程就会发现多了一个master,如果没有去看一下日志哪出错了。有的话你就可以打开浏览器看一下8080端口,网页上有这么一行 URL: spark://guo:7077,这代表master的地址,后面会用到。dfs和yarn的那些进程是没有的,那是我之前启动的。


启动slave

guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ sbin/start-slave.sh  spark://guo:7077
starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark-1.6.1-bin-hadoop2.6/logs/spark-guo-org.apache.spark.deploy.worker.Worker-1-guo.out
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ jps
2323 NameNode
3187 NodeManager
2870 ResourceManager
5241 Worker
2489 DataNode
5306 Jps
2700 SecondaryNameNode
5116 Master
Spark本地模式与Spark Standalone伪分布模式_第4张图片

查看/tmp你会发现多了俩文件spark-guo-org.apache.spark.deploy.master.Master-1.pid和spark-guo-org.apache.spark.deploy.worker.Worker-1.pid,这里面存的就是进程ID。如果没有设置它会默认存在/tmp目录下,因为/tmp目录里的文件会自动清除,所以在生产环境中要设置一下SPARK_PID_DIR。


如果想启动多个worker怎么办?

可以这样,先关掉slave,然后export 。。。

guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ sbin/stop-slave.sh
stopping org.apache.spark.deploy.worker.Worker
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ export SPARK_WORKER_INSTANCES=3
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ sbin/start-slave.sh  spark://guo:7077
starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark-1.6.1-bin-hadoop2.6/logs/spark-guo-org.apache.spark.deploy.worker.Worker-1-guo.out
starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark-1.6.1-bin-hadoop2.6/logs/spark-guo-org.apache.spark.deploy.worker.Worker-2-guo.out
starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark-1.6.1-bin-hadoop2.6/logs/spark-guo-org.apache.spark.deploy.worker.Worker-3-guo.out
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ jps
5536 Worker
2323 NameNode
3187 NodeManager
5606 Worker
2870 ResourceManager
2489 DataNode
5675 Worker
5740 Jps
2700 SecondaryNameNode
5116 Master

想搞HA怎么办(两个master)?

修改这个脚本,当然这只是模拟

guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ gedit ./sbin/start-master.sh

"${SPARK_HOME}/sbin"/spark-daemon.sh start $CLASS 1 \
把其中的1改为2就可以了

然后再启动master

guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ sbin/start-master.sh 
starting org.apache.spark.deploy.master.Master, logging to /opt/spark-1.6.1-bin-hadoop2.6/logs/spark-guo-org.apache.spark.deploy.master.Master-2-guo.out
guo@guo:/opt/spark-1.6.1-bin-hadoop2.6$ jps
5536 Worker
2323 NameNode
3187 NodeManager
5827 Master
5606 Worker
2870 ResourceManager
2489 DataNode
5675 Worker
2700 SecondaryNameNode
5116 Master
5935 Jps



vi中  /XX 查找XX


你可能感兴趣的:(Spark,大数据动物园)