- indexify开源程序包、适用于数据密集型生成式 AI 应用的实时服务引擎、提取和索引 PDF 文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图谱 RAG 和问答
2301_78755287
pdf数据结构算法深度优先逻辑回归宽度优先开源
一、软件介绍文末提供下载Indexify简化了构建和提供持久的多阶段数据密集型工作流的过程,并将其作为HTTPAPI或Python远程API公开。Indexify是开源核心计算引擎,为Tensorlake的无服务器工作流引擎提供支持,用于处理非结构化数据。Indexify是一个多功能的数据处理框架,适用于各种使用案例,包括:提取和索引PDF文档、汇总网站、转录和汇总音频文件、对象检测和描述、知识图
- 【数据挖掘】异构图与同构图
dundunmm
数据挖掘深度学习数据挖掘知识图谱人工智能
在图论(GraphTheory)中,异构图(HeterogeneousGraph)和同构图(HomogeneousGraph)是两种不同的图结构概念,它们的主要区别在于节点和边的类型是否单一。1.异构图(HeterogeneousGraph)定义:异构图是指节点类型和/或边类型不同的图,通常用于建模具有多种实体和关系的复杂系统。例如,在社交网络、知识图谱、生物网络等领域,数据往往包含多个类别的实体
- DeepSeek vs Grok vs ChatGPT:大模型三强争霸,谁将引领AI未来?
带上一无所知的我
chatgpt人工智能DeepSeek
DeepSeekvs.Grokvs.ChatGPT:大模型三强争霸,谁将引领AI未来?在人工智能领域,生成式模型的竞争已进入白热化阶段。DeepSeek、Grok和ChatGPT作为三大代表性工具,凭借独特的技术路径和应用优势,正在重塑行业格局。本文将从技术架构、核心功能、应用场景、性能成本等多维度展开深度对比,揭示其背后的竞争逻辑与未来趋势。一、技术架构:从知识图谱到通用智能的演进1.DeepS
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- 《如何建立知识图谱?这些资源和工具助你一臂之力》
知识图谱:解锁高效学习与成长的密码[]()在信息爆炸的时代,我们每天都会接触到海量的知识。从书本、网络文章到各类课程,知识的获取变得前所未有的容易。但你是否有过这样的困扰:学了很多知识,却感觉它们杂乱无章,在需要的时候无法快速调用?这时候,构建个人知识图谱就显得尤为重要。它就像一个私人知识管家,帮你将零散的知识整理得井井有条,让知识真正为你所用,助力你在学习和成长的道路上一路开挂。接下来,就让我们
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- 企业知识图谱构建: 整合结构化与非结构化数据
CaritoB
非结构化数据管理知识图谱
随着企业数据的爆炸性增长,如何有效地整合、分析和利用这些数据成为了重要课题。企业知识图谱作为一种先进的知识管理工具,通过将不同来源的结构化和非结构化数据统一在一个语义化的框架中,能够为企业提供全局性视角,提升决策效率和创新能力。本文将探讨如何在企业中构建知识图谱,并有效整合结构化与非结构化数据,为企业提供智能化的数据支持。1.企业知识图谱的基本概念知识图谱是一种语义网络,它通过节点和边的形式,将实
- AI大模型知识图谱和学习路线!
hhaiming_
人工智能知识图谱学习
23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的知识图谱和学习路线就变得非常重要!一、大模型全套的学习路线学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳
- 【知识图谱】neo4j安装与配置_社区版_2025(附完整安装软件包)
知识靠谱
知识图谱知识图谱neo4j人工智能
【知识图谱】neo4j-community-5.15.0社区版安装步骤前言所需环境配置1.安装JDK(1)测试一下(2)安装2.配置JDK环境3.安装neo4j4.配置neo4j环境5.测试安装结果前言(经历过各种版本NEO4J,遇见杂七杂八的各种问题,也看过非常多很好的教程,特此来分享一下,为大家排排坑。)所需环境配置环境工具:Windows10+jdk-17.0.7_windows-x64_b
- 解锁网络防御新思维:D3FEND 五大策略如何对抗 ATT&CK
vortex5
网络安全网络安全
D3FEND简介背景介绍2021年6月22日(美国时间),美国MITRE公司正式发布了D3FEND——一个网络安全对策知识图谱。该项目由美国国家安全局(NSA)资助,并由MITRE的国家安全工程中心(NSEC)负责管理和发布,目前版本为0.9.2-BETA-3。作为广为人知的ATT&CK框架的补充,ATT&CK聚焦于攻击者的战术和技术知识库,而长期以来,网络安全领域一直缺乏一个专门针对防御对策的系
- AI驱动的企业学习管理系统
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI、机器学习、深度学习、企业学习管理系统、个性化学习、学习路径推荐、知识图谱1.背景介绍在当今瞬息万变的数字化时代,企业面临着前所未有的挑战和机遇。知识更新速度加快,技术迭代日新月异,员工需要不断学习新技能,提升自身竞争力,才能适应不断变化的市场环境。传统的企业学习管理系统(LearningManagementSystem,LMS)往往以标准化课程和批量学习为主,难以满足员工个性化学习需求,且缺
- 基于问答对的实体识别和意图识别的知识图谱问答推理
风清扬【coder】
自然语言分析处理知识图谱人工智能自然语言处理
问答对数据questionanswer省直医保的参保范围是什么?中央直属、省直属在哈尔滨的机关、事业单位、社会团体及其职工和退休人员。参加省直医保的单位缴费基数如何确定和缴纳?在职职工(以下简称职工)个人月缴费基数按本人上年度月平均工资确定,由单位代扣代缴,用人单位月缴费基数按本单位参保职工个人月缴费基数之和确定。缴费费率:用人单位8%(含生育0.5%)、职工个人2%。缴费方式:用人单位、职工按月
- 借助知识图谱和Llama-Index实现基于大模型的RAG
爱吃牛油果的璐璐
知识图谱llamaoracle语言模型chatgpttransformer人工智能
幻觉是在处理大型语言模型(LLMs)时常见的问题。LLMs生成流畅连贯的文本,但经常产生不准确或不一致的信息。防止LLMs中出现幻觉的一种方法是使用外部知识源,如提供事实信息的数据库或知识图谱。矢量数据库和知识图谱使用不同的方法来存储和表示数据。矢量数据库适合基于相似性的操作,知识图谱旨在捕捉和分析复杂的关系和依赖关系。对于LLM中的幻觉问题,知识图谱是一个比向量数据库更好的解决方案。知识图谱为L
- 基于图论的产业网络知识图谱挖掘与构建
罗伯特之技术屋
智能科学与技术专栏知识图谱人工智能
摘要我国是全球产业规模最大、产业覆盖最全的国家,但受多种因素的影响,发现产业链的堵点断点、识别卡点、寻找代替通路、全面优化产业链势在必行。从数据底座构建、核心知识图谱挖掘、兼容传统产业链知识3个方面,阐述了基于图论的产业网络知识图谱的构建过程,以实现产业优化升级与模拟仿真。分析了产业网络知识图谱的应用场景和优势,并给出了其在集成电路行业的应用案例。关键词:图论;产业图谱;知识网络0引言产业经济是国
- 【RAG系列】知识加工的艺术 - 文档预处理实战手册
什么都想学的阿超
原理概念#深度学习深度学习RAG人工智能
知识加工的艺术-文档预处理实战手册原始文档文档拆分结构化数据非结构化数据表格处理器文本分割器格式化CSV语义分块知识图谱一、文本拆分的积木法则1.1机械分割vs语义理解固定窗口上下文感知段落拆分...模型参数量达到175B时...语义拆分模型参数量......175B时表现分割策略对比方法优点缺点代码示例固定窗口O(1)时间复杂度割裂技术术语text.split("\n\n")滑动窗口保留局部上下
- AIGC生图技术剖析:文本生成图像的核心算法与创新应用
喵手
零基础学JavaAIGC算法
全文目录:开篇语前言AIGC技术核心:从文本到图像的转换1.文本编码与语义提取2.生成对抗网络(GAN)3.变分自编码器(VAE)4.融合模型:CLIP+VQ-GAN核心算法示例:使用Python生成图像使用OpenAI的DALL-E生成图像解释AIGC在多个领域的应用前景1.艺术创作2.广告设计3.虚拟现实(VR)与增强现实(AR)4.游戏开发总结:AIGC生图技术的未来文末开篇语哈喽,各位小伙
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
程序猿阿伟
生成对抗网络人工智能机器学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
人工智能深度学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 《深度剖析:生成对抗网络中生成器与判别器的高效协作之道》
程序猿阿伟
生成对抗网络人工智能机器学习
在人工智能的前沿领域,生成对抗网络(GAN)以其独特的对抗学习机制,为数据生成和处理带来了革命性的变革。生成器与判别器作为GAN的核心组件,它们之间的协作效率直接决定了GAN在图像生成、数据增强、风格迁移等众多应用中的表现。深入探究二者如何实现更高效的协作,不仅是优化GAN性能的关键,也为解锁人工智能更多创新应用场景提供了可能。生成器与判别器:GAN的核心架构解析生成器(Generator)的使命
- 使用 Apache Jena 构建 RDF 数据处理与查询服务
梦落青云
apache知识图谱人工智能
一、引言随着语义网和知识图谱技术的不断发展,RDF(ResourceDescriptionFramework)作为一种用于描述资源的框架,被广泛应用于知识表示和数据集成。ApacheJena是一个功能强大的Java框架,用于处理RDF数据和SPARQL查询。本文将通过一个示例项目,展示如何使用ApacheJena实现RDF数据的加载、查询、推理、插入和更新操作。二、项目概述本项目的目标是使用Apa
- GAN(Generative Adversarial Network)—生成对抗网络
算法资料吧!
深度学习机器学习人工智能
GAN(GenerativeAdversarialNetwork)代表了深度学习中生成建模的尖端方法,通常利用卷积神经网络等架构。生成建模的目标是自主识别输入数据中的模式,使模型能够生成与原始数据集相似的新示例。本文涵盖了您需要了解的有关GAN、GAN架构、GAN的工作原理以及GAN模型类型等的所有信息。目录什么是生成对抗网络?GAN的类型GAN的架构GAN是如何工作的?生成对抗网络(GAN)的应
- Pytorch实现之混合成员GAN训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch生成对抗网络人工智能python深度学习机器学习计算机视觉
简介简介:提出一种新的MMGAN架构,使用常见生成器分布的混合对每个数据分布进行建模。由于生成器在多个真实数据分布之间共享,高度共享的生成器(通过混合权重反映)捕获分布的公共方面,而非共享的生成器捕获独特方面。论文题目:MIXEDMEMBERSHIPGENERATIVEADVERSARIALNETWORKS(混合成员生成对抗网络)会议:IEEEInternationalConferenceonIm
- Pytorch实现论文:基于多尺度融合生成对抗网络的水下图像增强
这张生成的图像能检测吗
GAN系列pytorch生成对抗网络人工智能深度学习神经网络计算机视觉python
简介简介:提出了一种新型的水下图像增强算法,基于多尺度融合生成对抗网络,名为UMSGAN,以解决低对比度和颜色失真的问题。首先经过亮度的处理,将处理后的图像输入设计的MFFEM模块和RM模块生成图像。该算法旨在适应各种水下场景,提供颜色校正和细节增强。论文题目:Underwaterimageenhancementbasedonmultiscalefusiongenerativeadversaria
- 知识库管理中台架构:数据资产激活与企业效率跃升
Baklib-企业帮助文档
其他
内容概要现代企业知识库管理中台架构的演进已突破传统文档存储范式,转向以智能分类引擎与动态数据治理为核心的认知计算体系。基于AI驱动的语义解析技术与分布式大数据处理框架,该架构实现了非结构化数据的多模态特征提取与知识图谱映射。其中,Baklib在数字体验平台(DXP)领域展现的跨系统整合能力,通过API接口标准化设计打通了CRM、ERP等业务系统的数据孤岛,其多级权限管理体系与实时版本控制机制保障了
- 医疗信息分析与知识图谱系统设计方案
翱翔-蓝天
知识图谱人工智能
医疗信息分析与知识图谱系统设计方案0.系统需求0.1项目背景本系统旨在通过整合医疗机构现有的信息系统数据,结合向量数据库、图数据库和开源AI模型,实现医疗数据的深度分析、疾病预测和医疗知识图谱构建,为医疗决策提供智能化支持。0.2核心需求数据集成与分析:对接现有医疗信息系统(HIS/LIS/PACS/EMR)医疗数据标准化处理多维度统计分析趋势预测分析知识图谱构建:医疗知识抽取实体关系构建知识推理
- 基于大模型的 SDL 需求阶段安全需求挖掘实战指南 —— 四步法实现从业务需求到风险矩阵的智能转换
大F的智能小课
大模型理论和实战人工智能语言模型算法安全
在软件开发生命周期(SDL)中,需求阶段的安全需求挖掘至关重要,它直接影响到软件的安全性和可靠性。随着大模型技术的发展,我们可以利用其强大的自然语言处理和知识图谱能力,实现从业务需求到风险矩阵的智能转换。本文将介绍一种基于大模型的四步法,帮助安全团队高效挖掘安全需求。一、业务需求解析:大模型驱动的语义理解目标:将自然语言描述的业务需求转化为结构化安全要素。方法:需求文本预处理:使用大模型(如GPT
- AIGC从入门到实战:ChatGPT 需要懂得写提示词的人
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AIGC从入门到实战:ChatGPT需要懂得写提示词的人第1章:AIGC概述1.1AIGC的基本概念AIGC(AI-GeneratedContent),即人工智能生成内容,是指利用人工智能技术,如生成对抗网络(GAN)、变分自编码器(VAE)等,生成具有高质量、多样化、个性化的文本、图像、音频等多媒体内容。AIGC技术已经广泛应用于内容创作、智能推荐、游戏开发、虚拟现实等多个领域,极大地提升了内容
- 生成对抗网络(GAN):从概念到代码实践(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能GAN网络对抗学习手势识别生成器与鉴别器生成对抗网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1