倍增法求LCA(最近公共最先)

 对于有根树T的两个结点u、v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u、v的祖先且x的深度尽可能大。

 

倍增法求LCA(最近公共最先)_第1张图片

 

如图,根据定义可以看出14和15的最近公共祖先是10,   15和16的最近公共祖先是1,     6和5的最近公共祖先是5......

假如我要求14和16的最近公共祖先,要怎么做呢?

最暴力的做法,就是先看14和16在不在同一层,如果他们不在同一层,那么较深的那个点往上爬(即距离根较远的那个点)

一直爬,爬到两点的深度一样

当两点深度一样时,判断他们是否在同一个点上,如果不是,则两个点同时往上爬,直到这两个点是同一个点

显然,这么做一般来说都是不行的。

下面介绍倍增法(图是用vector存的)

既然一步一步往上爬太慢了,那就一次爬远一点

我们预处理一个数组fa【x】【i】使游标快速移动,大幅度减少跳转次数。

fa【x】【i】表示 点x的第2^i个祖先

拿上图来说,fa【15】【0】就是点15的第2^0个祖先,即12(fa【15】【0】=12)

      fa【15】【1】就是点15的第2^1个祖先,即10(fa【15】【1】=10)

         fa【15】【2】就是点15的第2^2个祖先,即5(fa【15】【2】=5)

倍增法求LCA(最近公共最先)_第2张图片

怎么预处理出这个数组呢?我们观察上图,15的第一个祖先是12,12的第一个祖先是10

即fa【15】【0】=12     fa【12】【0】=10

而15的第二个祖先是10,和12的第一个祖先是一样的

fa【15】【1】=10

也就是说,对于点15来说,15的第二个祖先就是15的第一个祖先的第一个祖先(点12的第一个祖先)

用数组表示是fa[15][1]=fa[ fa[15][0] ][ 0 ];

fa[15][1]=fa[12][0]

推广到第2^i个祖先:递推式:fa[rt][i]=fa[fa[rt][i-1]][i-1];(rt为当前节点)

预处理代码:(depth数组存的是当前节点的深度)

void dfs(int f,int rt )//rt是当前节点,f是当前节点的父亲
{
    depth[rt]=depth[f]+1;
    fa[rt][0]=f;
    for(int i=1;i<20;++i)//自己估计i的范围
    fa[rt][i]=fa[fa[rt][i-1]][i-1];
    for(int i=0;i//用vector存的图,遍历当前节点的每一个孩子
    dfs(rt,E[rt][i]);
}

下一个问题是,游标移动到哪里合适?

我们的原则是,先让两个点的深度一致

然后,让两个点同时跳相同的步数

1.如果跳出根以外了,就不跳

2.如果跳到的点是相同的点,也不跳(不一定是最近的公共祖先)

不是以上两种情况,就跳

举个栗子,如图:

倍增法求LCA(最近公共最先)_第3张图片

 

假如我们问14和15的lca是哪个点

按照规则

我们先让14和15在同一层上(深度一致)

14跳到了13

然后,我们看跳多少步合适,如果i=3,即2^3=8步,发现已经跳出根以外了,不跳

再看i=2, 2^2=4,13和15的第四个祖先都是5,不跳

再看i=1,即跳2步,发现都是10,不跳

再看i=0,跳一步,13跳一步到11,15跳一步到12,两个点不相同,可以跳

此时第一遍循环结束,判断这两个点的第一个祖先是不是同一个点

如果是,则找到了

如果不是,那就继续进行循环

用图表示:

倍增法求LCA(最近公共最先)_第4张图片

第一步是14跳到13

第二步是13跳到11,15跳到12

发现11和12的第一个祖先都是10,找到答案,结束循环 (时间是log级别的)

代码:

int lca(int x,int y)//找x和y的最近公共祖先
{
    if(depth[x]//调整x的深度大一些
        swap(x,y);
    while(depth[x]!=depth[y])//使x和y的深度一致
    {
        for(int i=9;i>=0;--i){//初始常数自己根据问题进行调整
            if(depth[x]-(1<=depth[y])
                x=fa[x][i];
        }    
    }
    if(x==y) return x;
    while(fa[x][0]!=fa[y][0])//当x和y的第一位祖先都一样时退出循环
    {
        for(int i=9;i>=0;--i){
        //如果没有出界而且两点的祖先不一样,就跳
                if(fa[x][i]!=0&&fa[x][i]!=fa[y][i])
            x=fa[x][i],y=fa[y][i];
        }        
    }
    return fa[x][0];
}        
View Code

代码自己写的,有点丑,网上的没看懂....

下面给出测试代码和样例,大家可以去试一试,样例就是第一幅图

#include 
#include 
#include 
#include 
using namespace std;
vector<int> E[20]; 
int depth[20];
int fa[20][20];
void dfs(int f,int rt )
{
    depth[rt]=depth[f]+1;
    fa[rt][0]=f;
    for(int i=1;i<20;++i)
    fa[rt][i]=fa[fa[rt][i-1]][i-1];
    for(int i=0;ii)
    dfs(rt,E[rt][i]);
}
int lca(int x,int y)
{
    if(depth[x]//调整左边深 
        swap(x,y);
    while(depth[x]!=depth[y])
    {
        for(int i=9;i>=0;--i){
            if(depth[x]-(1<=depth[y])
                x=fa[x][i];
        }    
    }
    if(x==y) return x;
    while(fa[x][0]!=fa[y][0])
    {
        for(int i=9;i>=0;--i){
            if(fa[x][i]!=0&&fa[x][i]!=fa[y][i])
            x=fa[x][i],y=fa[y][i];
        }        
    }
    return fa[x][0];
}
int main()
{
    int l,r;
    for(int i=1;i<=15;++i){
        cin>>l>>r;
        E[l].push_back(r); 
    }
    dfs(0,1);
    int a,b,t=100;
    while(t--)
    {
        cin>>a>>b;
        cout<endl;
    }
    
    
    return 0;
}
/*
输入图: 
1 2
2 4
4 5
5 6
5 7
7 10
10 11
10 12
11 13
12 15
13 14
1 3
3 8
8 9
9 16
*/
View Code

你可能感兴趣的:(倍增法求LCA(最近公共最先))