1. 导入boston房价数据集。
from sklearn.datasets import load_boston boston = load_boston() boston.keys() print(boston.data)
2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
import pandas as pd #导包 pd.DataFrame(boston.data) #预处理获取斜率 from sklearn.linear_model import LinearRegression LineR = LinearRegression() LineR.fit(x.reshape(-1,1),y) w=LineR.coef_ #图形化显示 x = data[:,5] y = boston.target import matplotlib.pyplot as plt plt.scatter(x,y) plt.plot(x,w*x+b,'G') plt.show()
3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果。
from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(boston.data,y) w = lineR.coef_ b = lineR.intercept_ import matplotlib.pyplot as plt x=boston.data[:,12].reshape(-1,1) y=boston.target plt.figure(figsize=(10,6)) #指定显示图大小 plt.scatter(x,y) from sklearn.linear_model import LinearRegression lineR=LinearRegression() lineR.fit(x,y) y_pred=lineR.predict(x) plt.plot(x,y_pred,'G') print(lineR.coef_,lineR.intercept_) plt.show()
4. 一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示。
xx = data[:,12].reshape(-1,1) plt.scatter(xx,y) plt.show() lr12 = LinearRegression() lr12.fit(xx,y) w = lr12.coef_ b = lr12.intercept_ plt.scatter(xx,y) plt.plot(xx,w*xx+b,'G') plt.show() from sklearn.preprocessing import PolynomialFeatures p = PolynomialFeatures() p.fit(xx) x_poly = p.transform(xx) lrp = LinearRegression() lrp.fit(x_poly,y) lrp.coef_ lrp.intercept_ lrp = LinearRegression() lrp.fit(x_poly,y) y_poly = lrp.predict(x_poly) plt.scatter(xx,y) plt.plot(xx,w*xx+b,'G') plt.scatter(xx,y_poly) plt.show() lrp.coef_