opencv学习——cv2.findHomography()

# 第三个参数 Method used to computed a homography matrix. The following methods are possible:
        #0 - a regular method using all the points
        #CV_RANSAC - RANSAC-based robust method
        #CV_LMEDS - Least-Median robust method
        # 第四个参数取值范围在 1 到 10 , 绝一个点对的阈值。原图像的点经过变换后点与目标图像上对应点的误差
        # 超过误差就认为是 outlier
        # 返回值中 H 为变换矩阵。mask是掩模,online的点
        H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)

画出匹配点的连线,以及拼接图。
代码:

import cv2
import numpy as np

MIN_MATCH_COUNT = 10
img1 = cv2.imread('images/1.jpg')          # queryImage
img2 = cv2.imread('images/2.jpg')          # trainImage

def SIFT():
    # Initiate SIFT detector
    sift = cv2.xfeatures2d.SIFT_create()
    # find the keypoints and descriptors with SIFT
    kp1, des1 = sift.detectAndCompute(img2,None)
    kp2, des2 = sift.detectAndCompute(img1,None)
    # BFMatcher with default params
    bf = cv2.BFMatcher()
    matches = bf.knnMatch(des1,des2, k=2)
    # Apply ratio test
    good = []
    for m,n in matches:
        if m.distance < 0.75*n.distance:

          good.append(m)
    # cv2.drawMatchesKnn expects list of lists as matches.
    good_2 = np.expand_dims(good, 1)
    matching = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good_2[:20],None, flags=2)

    if len(good)>MIN_MATCH_COUNT:
        # 获取关键点的坐标
        src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
        dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)

        H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
        wrap = cv2.warpPerspective(img2, H, (img2.shape[1]+img2.shape[1] , img2.shape[0]+img2.shape[0]))
        wrap[0:img2.shape[0], 0:img2.shape[1]] = img1

        rows, cols = np.where(wrap[:,:,0] !=0)
        min_row, max_row = min(rows), max(rows) +1
        min_col, max_col = min(cols), max(cols) +1
        result = wrap[min_row:max_row,min_col:max_col,:]#去除黑色无用部分

        return matching, result

if __name__ == '__main__':
    matching, result = SIFT()
    cv2.imshow('img3.jpg',matching)
    cv2.imshow('result.jpg',result)
    cv2.waitKey(0)
    cv2.destroyAllWindows() 
    cv2.waitKey(1)
    cv2.waitKey(1)
    cv2.waitKey(1)
    cv2.waitKey(1)

你可能感兴趣的:(opencv学习——cv2.findHomography())