- 【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(二十八)
向往风的男子
k8s学习kubernetes容器
本站以分享各种运维经验和运维所需要的技能为主《python零基础入门》:python零基础入门学习《python运维脚本》:python运维脚本实践《shell》:shell学习《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战《k8》从问题中去学习k8s《docker学习》暂未更新《ceph学习》ceph日常问题解决分享《日志收集》ELK+各种中间件《运维日常》
- K8S - Volume - NFS 卷的简介和使用
nvd11
K8Skubernetes容器云原生
在之前的文章里已经介绍了K8S中两个简单卷类型hostpath和emptydirk8s-Volume简介和HostPath的使用K8S-Emptydir-取代ELK使用fluentd构建loggingsaidcar但是这两种卷都有同1个限制,就是依赖于k8snodes的空间如果某个servicepod中需要的volumn空间很大,这时我们就需要考虑网络磁盘方案,其中NAS类型的Volume是常用且
- fluentd 简介,日志收集并导入BigQuery
nvd11
CloudspringEtlspringboot
日志收集的工具有很多种例如Splunk,很多大公司都在使用,但是个人使用的话并不合适,主要是需要license的…钱是1个大问题另1个常见开源的解决方案是ELK,但是搭建和学习成本高,如果只是为了日志收集并不值。对于k8s方案,还有1个开源选择,就是fluentd,本文的主题。Fluentd的简介Fluentd是一个开源的数据收集器,旨在实现日志数据的统一收集、处理和转发。它支持多种数据源和数据格
- ELK 架构中 ES 性能优化
xianjie0318
elk架构elasticsearch
1.背景由于目前日志采集流程中,经常遇到用户磁盘IO占用超过90%以上的场景,但是观察其日志量大约在2k~5k之间,整体数据量不大,所以针对该问题进行了一系列的压测和实验验证,最后得出这篇优化建议文档2.压测前期准备2.1制造大量日志该阶段为数据源输入阶段,为了避免瓶颈在数据制造侧,所以需要保证filebeat具有足够的日志制造能力最后效果,filebeat可以达到70kQPS的数据发往logst
- K8S - Emptydir - 取代ELK 使用fluentd 构建logging saidcar
nvd11
K8Skubernetes
由于k8s的无状态service通常部署在多个POD中,实现多实例面向高并发。但是k8s本身并没有提供集中查询多个pod的日志的功能其中1个常见方案就是ELK.本文的方案是利用fluentdsidecar和emptydir把多个pod的日志导向到bigquery的table中。Emptydir的简介Kubernetes中的EmptyDir是一种用于容器之间共享临时存储的空目录卷类型。EmptyDi
- 5分钟熟练上手ES的具体使用
佚名涙
elasticsearchjenkins大数据学习
5分钟上手ES的具体使用相信有很多同学想要去学习elk时会使用docker等一些方式去下载相关程序,但提到真正去使用es的一系列操作时又会知之甚少。于是这一篇博客应运而生。本文就以下载好elk/efk系统后应该如何去使用为例,介绍es的具体操作。es关键字基本概念索引(Index):类似于关系型数据库中的“数据库”,是数据存储的容器。文档(Document):类似于关系型数据库中的“行”,是JSO
- 深入解析C++单例模式:从基础到线程安全的高效实现
shuai_258
c++全套攻略c++c++多线程开发语言c++qt
引言在C++开发中,单例模式(SingletonPattern)是一种常见且重要的设计模式。它确保类的实例在整个程序生命周期中唯一,并提供一个全局访问点。这在日志管理、配置管理等场景中尤为常见。本篇博客将带你深入了解单例模式的实现原理,并介绍如何在多线程环境下实现线程安全的单例模式。什么是单例模式?单例模式是一种设计模式,其核心思想是确保某个类只能有一个实例,并提供一个全局的访问点。其应用场景包括
- 【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(十一)
向往风的男子
k8s学习kubernetes容器
本站以分享各种运维经验和运维所需要的技能为主《python零基础入门》:python零基础入门学习《python运维脚本》:python运维脚本实践《shell》:shell学习《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战《k8》从问题中去学习k8s《docker学习》暂未更新《ceph学习》ceph日常问题解决分享《日志收集》ELK+各种中间件《运维日常》
- 【mysql】mysql之优化
向往风的男子
DBAmysql数据库
本站以分享各种运维经验和运维所需要的技能为主《python零基础入门》:python零基础入门学习《python运维脚本》:python运维脚本实践《shell》:shell学习《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战《k8》从问题中去学习k8s《docker学习》暂未更新《ceph学习》ceph日常问题解决分享《日志收集》ELK+各种中间件《运维日常》
- 集成 Logrus 到 Gin:打造高效的 Go Web 日志系统
好奇的菜鸟
Gingingolang前端
在Go语言的Web开发中,Gin是一个轻量级且高性能的Web框架,而Logrus则是一个非常流行的日志库,它提供了结构化的日志记录功能。将Logrus集成到Gin框架中,可以极大地增强你的Web应用程序的日志管理能力。本文将详细介绍如何在Gin中集成Logrus,并创建一个自定义的日志记录中间件。Gin与Logrus:为什么集成?Gin框架自带的日志系统虽然简单易用,但功能相对有限。Logrus提
- ELK架构介绍
星河漫漫l
elkelasticsearch运维服务器
一、ELK简介ELK是由三个开源软件组成的,分别是:Elasticsearch、Logstash和Kibana,这三个软件各自在日志管理和数据分析领域发挥着重要作用。Elasticsearch提供分布式存储和搜索能力;Logstash负责数据收集和处理,而Kibana则提供数据可视化和分析界面。他们共同构成了一个完整的日志管理解决方案,帮助企业高效利用日志数据进行监控、分析和安全审计。1.Elas
- ELK日志分析系统之集成Filebeat
奔跑吧邓邓子
高效运维
目录一、Filebeat是什么?二、集成Filebeat1.安装Filebeat2.配置3.启动本博在ELK日志分析系统搭建一文中,介绍了使用Elasticsearch、Logstash、Kibana来搭建ELK。不过由于Logstash是一个功能强大的日志服务,作为日志采集器会占用较多的系统资源,如果需要添加插件,全部服务器的Logstash都要添加插件,扩展性很差。而Filebeat作为一个轻
- 使用 ELK Stack 进行云原生日志记录和监控:AWS 中的开发运营方法
数云界
elk云原生aws
使用ELKStack进行云原生日志记录和监控欢迎来到雲闪世界。在当今的云原生世界中,日志记录和监控是强大的DevOps策略的重要组成部分。监控应用程序性能、跟踪错误和分析日志对于确保无缝操作和主动识别潜在问题至关重要。在本文中,我们将指导您使用AWS上的ELKStack(Elasticsearch、Logstash和Kibana)设置云原生日志记录和监控,从而实现以DevOps为中心的方法来管理基
- Vicky的ScalersTalk第六轮新概念朗读持续力训练Day50 20210319
Vicky_b9de
练习材料:AlostshipPart-1一艘沉船Thesalvageoperationhadbeenacompletefailure.Thesmallship,Elkor,whichhadbeensearchingtheBarentsSeaforweeks,wasonitswayhome.Aradiomessagefromthemainlandhadbeenreceivedbytheship'sc
- 一、ELK架构介绍
李白望明月
ELK基础介绍elk
一、ELK架构介绍ELK是一个应用套件,由Elasticsearch/Logstash/Kibana三个部分软件组成,简称ELK。ELK是一个做日志分析的管理系统。在服务器中的系统日志,网络日志,应用系统日志等各个日志收集/过滤/清洗,然后进行集中存放并可用实时检索/分析/展示日志。Logstash(收集日志)–>Elasticsearch(检索日志)–>Kibana(可视化)Elasticsea
- 【网络架构】ELK
云计算稿手
网络架构架构elk
目录一、ELK介绍1.1ELK是什么1.2Elasticsearch1.3Logstash1.4Kibana1.5为什么使用ELK二、ELK原理2.1工作原理2.2ELK的应用架构图三、ELK的安装部署3.1环境部署3.2前期环境3.3安装Elasticsearch3.3.1修改配置3.3.2查看节点信息3.4安装Logstash3.4.1安装服务3.4.2使用Logstash3.4.3对接ela
- ELK架构
小楚同学呀~
一、Logstash+elasticsearch+Kibana首先由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上elasticsearch进行存储。elasticsearch将数据以分片的形式压缩存储并提供多种API供用户查询,操作。用户也可以直观的通过配置KibanaWebPortal方便的对日志进行查询,并根据数据生成报表。优点:搭建简单,易于上手。
- SpringCloud集成ELK
echola_mendes
ELKspringcloudelkjava
1、添加依赖net.logstash.logbacklogstash-logback-encoder6.12、在logback-spring.xml中添加配置信息(logback-spring.xml在文末)192.168.2.203:4560............192.168.2.203:4560对应搭建的Logstash地址Logback日志打印由于SpringBoot项目在引用了sprn
- ELK7.8部署:Elasticsearch+Logstash+Kibana搭建分布式日志平台
_海风_
运维分布式
ELK7.8部署:Elasticsearch+Logstash+Kibana搭建分布式日志平台一、前言1、ELK简介2、ELK工作流二、准备工作1、服务器&软件环境说明2、ELK环境准备三、Elasticsearch部署1、准备工作2、配置四、Logstash部署1、准备工作2、Logstash配置五、Kibana部署1、准备工作2、Kibana配置与访问测试六、测试1、日志写入2、访问七、备注1
- springboot日志管理
听~宇
SSMspringbootjavalog4j
1.使用logback记录日志Springboot已经默认帮你整合好了logback,日志输出文件在当前项目路径log文件夹下(1)Maven依赖org.projectlomboklombok(2)Logback配置%d%p(%file:%line\)-%m%nUTF-8日志目录,没有会自动创建-->日志策略,每天简历一个日志文件,或者当天日志文件超过64MB时-->log/file/fileLo
- ELK处理 SpringBoot 日志,真实太妙了!
进击的王小二
大数据javaelkspringboot
在排查线上异常的过程中,查询日志总是必不可缺的一部分。现今大多采用的微服务架构,日志被分散在不同的机器上,使得日志的查询变得异常困难。工欲善其事,必先利其器。如果此时有一个统一的实时日志分析平台,那可谓是雪中送碳,必定能够提高我们排查线上问题的效率。本文带您了解一下开源的实时日志分析平台ELK的搭建及使用。ELK简介ELK是一个开源的实时日志分析平台,它主要由Elasticsearch、Logst
- SpringBoot+Kafka+ELK 完成海量日志收集(超详细)
2401_83703797
程序员springbootkafkaelk
SpringBoot项目准备引入log4j2替换SpringBoot默认log,demo项目结构如下:pomIndexController测试Controller,用以打印日志进行调试InputMDC用以获取log中的[%X{hostName}]、[%X{ip}]、[%X{applicationName}]三个字段值NetUtil启动项目,访问/index和/ero接口,可以看到项目中生成了app
- spring cloud搭建elk
2301_79655496
程序员springcloudelkjenkins
elastic官网:https://www.elastic.co/cn/downloads1.elasticsearch-6.2.2(存储日志数据)wgethttps://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.2.2.tar.gz2.logstash-6.2.2(收集日志数据)wgethttps://artifac
- 关于日志数据管理
Aichris
熟悉数据中心运维的人都知道,日志数据是记录IT系统操作行为的重要数据,所有的硬件设备与软件执行的所有指令都会通过日志保留下来。企业针对日志数据的管理,目前的情况是怎么样的呢?1、缺少日志管理能力。绝大多数企业对分散的海量日志数据几乎没有管理,不仅没有发挥作用,反而占用了存储空间。2、一家企业是否能够真正做到智能运维,体现出了这家企业的IT服务水平。人工智能AI为什么这么火爆,就是因为AI能够大大的
- 【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(二十四)
向往风的男子
k8s学习kubernetes容器
本站以分享各种运维经验和运维所需要的技能为主《python零基础入门》:python零基础入门学习《python运维脚本》:python运维脚本实践《shell》:shell学习《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战《k8》从问题中去学习k8s《docker学习》暂未更新《ceph学习》ceph日常问题解决分享《日志收集》ELK+各种中间件《运维日常》
- 【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(十九)
向往风的男子
k8s学习kubernetes容器
本站以分享各种运维经验和运维所需要的技能为主《python零基础入门》:python零基础入门学习《python运维脚本》:python运维脚本实践《shell》:shell学习《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战《k8》从问题中去学习k8s《docker学习》暂未更新《ceph学习》ceph日常问题解决分享《日志收集》ELK+各种中间件《运维日常》
- 【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(二)
向往风的男子
k8s学习kubernetes容器
本站以分享各种运维经验和运维所需要的技能为主《python零基础入门》:python零基础入门学习《python运维脚本》:python运维脚本实践《shell》:shell学习《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战《k8》从问题中去学习k8s《docker学习》暂未更新《ceph学习》ceph日常问题解决分享《日志收集》ELK+各种中间件《运维日常》
- 【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(二十三)
向往风的男子
k8s学习kubernetes容器
本站以分享各种运维经验和运维所需要的技能为主《python零基础入门》:python零基础入门学习《python运维脚本》:python运维脚本实践《shell》:shell学习《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战《k8》从问题中去学习k8s《docker学习》暂未更新《ceph学习》ceph日常问题解决分享《日志收集》ELK+各种中间件《运维日常》
- Java日志详解
思静语
#日志java
文章目录概述日志级别日志框架LogBackLog4jSlf4j查看日志Log4j2和Logback都支持异步日志常见的日志管理系统日志收集分析概述日志的定义:程序执行过程中,记录程序运行的情况的信息日志的作用:Log日志,主要用于记录程序运行的情况,以便于程序在部署之后的排错调试等,也有利于将这些信息进行持久化(如果不将日志信息保存到文件或数据库,则信息便会丢失)。日志级别1、日志级别针对不同的场
- 5.3 MySql实战
楚楚ccc
Java系列mysql
5.3.1数据分布5.3.2负载均衡5.3.3备份与恢复1.mysql日志管理mysql日志默认保存位置为/usr/local/mysql/data,mysql日志配置文件是/etc/my.cnf错误日志:记录mysql启动停止运行时所有的错误信息vim/etc/my.cnflog-error=/home/mysql/error.log##错误日志的保存路径通用查询日志:记录mysql所有连接和语
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><