- Spring Cloud Gateway 路由断言匹配规则详解
前言:Gateway的路由断言工厂(RoutePredicateFactories)是用于路由规则匹配的组件,通过这些断言工厂,Gateway能够根据请求的属性,例如:路径、方法、头部信息等,来完成不同的请求转发,本篇分享几种常见的断言工厂及配置方法。Path路由工厂根据请求路径进行匹配#路由唯一标志spring.cloud.gateway.routes[0].id=user-service#路由
- Pushgateway扩展Prometheus监控
ivwdcwso
运维与云原生prometheusk8s云原生
Pushgateway是Prometheus生态系统中的一个重要组件,它允许我们将短期作业或批处理任务的指标推送到Prometheus中。本文将详细介绍如何安装、配置和使用Pushgateway来扩展Prometheus监控。1.Pushgateway简介Pushgateway主要用于解决以下场景:短期作业无法被Prometheus直接抓取批处理任务需要推送指标防火墙后的应用需要主动推送指标它作为
- 浅析Nordic nRF5 SDK例程架构(三)
Real你老王
单片机c#
浅析NordicnRF5SDK例程架构第一章前言及bsp例程浅析第二章ble_app_uart例程浅析第三章添加电池电量服务(BAS)第四章如何使用的修改协议栈(以SESIDE为例)文章目录浅析NordicnRF5SDK例程架构一、需要的头文件二、定义电池的电量服务实例三、服务初始化四、sdk_config.h文件配置五、修改效果六、可能出现的Debug汇总本文紧接上篇,将主要介绍如何在nRF5_
- 浅析Nordic nRF5 SDK例程架构(四)
Real你老王
架构
浅析NordicnRF5SDK例程架构第一章前言及bsp例程浅析第二章ble_app_uart例程浅析第三章添加电池电量服务(BAS)第四章如何使用的修改协议栈(以SESIDE为例)文章目录浅析NordicnRF5SDK例程架构一、概述二、修改方法三、可能出现的Debug汇总本文紧接上篇,将主要介绍如何在nRF5_sdk的ble_peripheral\ble_app_uart工程为例,在NUS服务
- STM32 开发笔记:从环境搭建到任务调度
嵌入式的小萌新
stm32笔记嵌入式硬件
今天体验了一把augment确实好用,记录一下STM32开发笔记:从环境搭建到任务调度️环境准备必需工具STM32CubeMX:图形化配置工具,用于初始化MCU外设和生成基础代码STM32CubeCLT:包含编译工具链(arm-none-eabi-gcc)和烧录工具(STM32_Programmer_CLI)CMake:跨平台构建系统,用于管理项目编译流程OpenOCD:开源调试器(可选,用于DA
- 【Prometheus】通过tar包部署单机版Prometheus 和 Pushgateway
在ECS(ElasticComputeService)机器上通过tar包部署Prometheus和Pushgateway,并配置Prometheus采集Pushgateway的数据,是一个常见的监控部署任务。以下是详细的步骤说明:环境准备操作系统:Linux(如CentOS、Ubuntu)已安装tar命名已开通ECS实例的相应端口(9090forPrometheus,9091forPushgate
- 浅析Nordic nRF5 SDK例程架构(二)
Real你老王
架构单片机嵌入式硬件
浅析NordicnRF5SDK例程架构第一章前言及bsp例程浅析第二章ble_app_uart例程浅析第三章添加电池电量服务(BAS)第四章如何使用的修改协议栈(以SESIDE为例)文章目录浅析NordicnRF5SDK例程架构二、ble_app_uart例程浅析二、bsp例程浅析1.ble_app_uart例程main2.串口初始化3.Log模块初始化4.初始化低功耗管理模块5.初始化BLE协议
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 动态链接库:技术赋能,打通“最后一公里”的商业模式
超级晒盐人
经验分享学习方法人工智能教育电商程序员创富
序言-飞跃大山的故事阿登是一位热爱骑行的冒险者,他计划骑行穿越一片壮丽的山脉,去探索那片未知的风景。然而,当他查看路线图时,他发现其中有一座几乎不可能翻越的高峰。这座山峰不仅陡峭无比,还充满了危险的地形,即使是经验最丰富的骑行者也望而却步。阿登知道,仅凭自己的力量,很难完成这次骑行计划。于是,他开始寻找解决方案。在一次偶然的机会中,他听说了一位名叫阿飞的飞行员,他提供一种独特的服务——用直升机帮助
- 模块化汽车基础设施的正面交锋---区域架构与域架构
汽车电子实验室
车载电子与软件框架汽车架构OEM怎么掌握软件开发能力ZEVonUDS-J1979车载通信网络槪述HPC软件架构
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是系统思考、大胆设计、小心求证;三是“一张纸制度”,也就是无论多么复杂的工作内容,要在一张纸上描述清楚;四是要坚决反对虎头蛇尾,反对繁文缛节,反对老
- CALayer的异步处理
在iOS开发中,实现**CALayer**的异步处理是优化性能的关键技术,尤其对于复杂绘制或需要高性能渲染的场景。以下是完整实现方案:一、异步绘制核心架构设置异步绘制标志触发display创建异步任务执行绘制生成CGImage设置contents主线程CALayer实现displayLayer:方法全局队列CoreGraphics绘制主线程回调二、完整实现代码1.自定义异步图层//AsyncLay
- 在Windows上构建本地服务器实现Augment团队邀请额度自动化增长的技术探索
yangshuo1281
windows服务器自动化
自动化:摘要:随着AI编码助手在开发领域日益普及,如何最大化利用这些工具的免费额度成为了许多开发者关心的话题。本文将以Augment为例,深入探讨一个技术爱好者的“极限挑战”:在Windows操作系统上,从零开始搭建一个本地全栈Web应用,以自动化方式完成团队邀请流程,从而实现免费使用额度的增长。本文不仅是一份操作指南,更是一次关于API交互、Web自动化、前后端开发的深度技术实践。在文章的最后,
- 这是gpt o1给出的物联网工程专业的大学规划,有人看看这个合理吗?
王倚山
gpt物联网学习开发语言
下面是一份更为详细、覆盖全年(包括寒暑假)的四阶段学习规划,旨在帮助你在大学剩余时间里持续学习、循序渐进地掌握物联网(IoT)核心技能,打造深厚的技术壁垒。每个阶段都有明确的学习目标与自学内容细节,并在寒暑假安排了“强化期”任务,让你全年不停歇,不断提升。总体思路稳扎稳打:从嵌入式基础到RTOS、传感器驱动、通信协议,再到边缘计算、云平台、工业协议、安全攻防,层层深入。项目驱动:每个阶段至少完成1
- Python知识点:如何使用memory_profiler进行内存分析
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!如何使用memory_profiler进行Python代码内存分析在开发高性能的Python应用程序时,理解和优化内存使用是至关重要的。memory_profiler是一个强大的工具,它可以帮助你监控Python代码的内存使用情况。本文将介绍如何使用memory_profiler来分
- 数据结构之栈实验
lannnn_
学习记录数据结构c语言栈
栈实验实验目的实验环境实验要求实验内容源代码运行结果实验目的掌握栈这种数据结构特性及其主要存储结构,并能在现实生活中灵活运用。实验环境CodeBlocks实验要求1.熟悉c语言的语法知识;2.掌握栈的顺序存储结构—顺序栈的定义、构造、获得栈顶元素、入栈、出栈等基本操作;实验内容完成栈的定义、构造、获得栈顶元素、进栈、出栈等函数的编写。要求在主函数中实现对以上操作的调用,编写一个算法判断给定的字符向
- 9、并行计算在现代计算中的应用与优化
seed
探索并行计算与HPC新范式并行计算高性能计算大数据分析
并行计算在现代计算中的应用与优化1.引言并行计算作为一种高效的计算模式,近年来在工业和学术界得到了广泛的应用和发展。随着计算需求的不断增加,传统的串行计算模式已经难以满足现代复杂问题的需求。并行计算通过将计算任务分解为多个子任务,并在多个处理单元上同时执行,从而显著提高了计算效率。本文将探讨并行计算在现代计算中的应用与优化,重点介绍并行计算的基本原理、应用场景和技术细节。2.并行计算的基本原理并行
- Linux 工作环境配置
终端shell如果是pc就安装iterm2,如果是远程服务器就跳过该步骤调整字体,主题;熟悉呼出和tab切换快捷键安装完成后,在/bin目录下会多出一个zsh的文件。修改默认终端,执行:【chsh-s/bin/zsh】chsh需要su权限,没有的话可以在bashrc中加入【exec/bin/zsh】此时可以安装autojump了,https://blog.csdn.net/liujan511536
- 【Pytorch】8.torch.nn.conv2d
Elephant_King
Pytorchpytorch人工智能python
这个函数和我们之前提到的【Pytorch】6.torch.nn.functional.conv2d的使用的作用相似,都是完成CV领域的卷积操作,这里就不在过多赘述torch.nn.conv2d的使用打开pytorch的官方文档,我们可以看到torch.nn.conv2d包含了若干参数in_channels:代表输入的通道数out_channels:代表输出的通道数kernel_size:代表卷积核
- Abaqus许可价格高,项目组如何合理调度资源?
在大型制造企业、科研机构或工程服务公司中,Abaqus已成为结构非线性分析与多物理场仿真的首选平台之一。它能够处理复杂接触、塑性变形、大变形、断裂、复合材料等高难度问题,尤其适合航空航天、汽车碰撞、精密工程等领域的计算模拟。但同时,Abaqus的模块价格昂贵、资源调度复杂,特别是在多个项目组并行使用的环境下,频繁出现:仿真任务排队、许可冲突;模块占用严重、使用不透明;项目间“抢资源”,效率低下;如
- 定时器和守护线程
(八)定时器标准库中的定时器标准库中提供了一个Timer类。Timer类的核心方法为schedule,schedule包含两个参数:第⼀个参数指定即将要执行的任务代码,第⼆个参数指定多长时间之后执行(单位为毫秒)。Timertimer=newTimer();timer.schedule(newTimerTask(){@Overridepublicvoidrun(){System.out.print
- TCP的三次握手和四次挥手:原理与过程详解
在互联网高速发展的今天,网络通信已经成为我们日常生活和工作中不可或缺的一部分。而在众多网络协议中,传输控制协议(TransmissionControlProtocol,TCP)作为互联网协议族的核心协议之一,承担着保障网络通信可靠性的重要任务。TCP协议通过其精心设计的连接管理机制,确保了数据传输的可靠性、有序性和完整性,为上层应用提供了稳定的通信基础。TCP是一种面向连接的、可靠的、基于字节流的
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 顶点着色器:3D世界的魔法化妆师
你一身傲骨怎能输
计算机图形学着色器
摘要顶点着色器是3D图形渲染中的关键组件,负责将3D模型中的顶点数据转换为2D屏幕坐标,并传递颜色、法线、纹理等属性。它通过坐标变换、属性传递和动画变形等功能,使角色和场景动态化,如角色骨骼动画、水面波动和旗帜飘动等。顶点着色器在渲染管线中处于第一站,与其他着色器(如几何着色器和片元着色器)协作,共同完成复杂的图形渲染任务。通过优化计算和合理分配顶点数量,顶点着色器能够高效处理大量数据,广泛应用于
- 常见构建工具使用与原理浅析
1.初版构建工具1.1.GruntGrunt是前端第一个正式的构建工具,它基于Node.js开发。Grunt同样是基于插件实现功能拓展增强,但对于像Webpack上很多能力,如HMR、ScopeHoisting等都是不支持的,可以作为学习Webpack前的了解。Grunt更像是一种自动化的配置工具集,就如官方所说,Grunt是TheJavaScriptTaskRunner,每个Grunt任务通常必
- 游戏引擎中顶点着色&像素着色
霸王奉先
游戏开发基础理论游戏引擎顶点着色器像素着色器顶点颜色顶点UV顶点法向
一.GPU渲染管线GPU在接收到游戏端提交的Mesh,Shader数据后,渲染管线开始工作,将数据进行处理投射为2D屏幕中光栅图像.GPU硬件中着色单元有两类,分别为顶点着色器和像素着色器.二.顶点着色器完成Mesh网格中顶点(3D)到屏幕(2D)计算vertex_fvf(灵活顶点格式)=3D坐标+法向+UV+颜色(布料,摇曳等特殊效果)+自定义structVetex_Fvf{floatx,y,z
- ModusToolbox 实战入门 - PSOC C3 Smart IO 与 GPIO 应用篇
WPG大大通
Infineon产线大大通软件GPIOCPU开发工具
摘要本文将带您了解PSOC™ControlC3MCU的架构与开发工具,并示范如何使用EclipseIDEforModusToolbox™创建项目。通过本次使用smartI/O外设的实作示例,您将学习如何将按钮输入引脚通过smartI/O连接至输出引脚,以驱动外部LED,在无需CPU参与的情况下完成初始化后自动运行,进一步体验PSOC™ControlC3的低功耗与高集成特性。软件下载与安装软件版本M
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- 使用 Bank Churn 数据集进行二元分类
一、前言分类任务:预测客户是继续使用其帐户还是关闭帐户(例如,流失)项目地址:https://www.kaggle.com/competitions/playground-series-s4e1二、具体步骤(一)数据导入与预览importpandasaspdimportnumpyasnpimportmatplotlib.pylabaspltimportseabornassnsfromsklearn
- Longformer: The Long-Document Transformer(2020-4-10)
不负韶华ღ
深度学习(NLP)transformer深度学习人工智能
模型介绍目前基于Transformer的预训练模型在各项NLP任务纷纷取得更好的效果,这些成功的部分原因在于Self-Attention机制,它运行模型能够快速便捷地从整个文本序列中捕获重要信息。然而传统的Self-Attention机制的时空复杂度与文本的序列长度呈平方的关系,这在很大程度上限制了模型的输入不能太长,因此需要将过长的文档进行截断传入模型进行处理,例如BERT中能够接受的最大序列长
- Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
蓝婷儿
pythonpython数据分析逻辑回归
✅今日目标回顾整个本周数据分析&建模流程学会训练第二种模型:决策树(DecisionTree)掌握多模型对比评估的方法与实践输出综合对比报告:准确率、精确率、召回率、F1等指标为后续模型调优与扩展打下基础一、本周流程快速回顾步骤内容第1天高级数据操作(索引、透视、变形)第2天缺失值和异常值处理第3天多表合并与连接第4天特征工程(编码、归一化、时间)第5天数据集拆分(训练集/测试集)第6天逻辑回归模
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc