[CSP-S模拟测试48]反思+题解

状态很垃圾的一场考试。感觉“这么多分就够了”的心态很是在给自己拖后腿。

 

打开题面,第一页赫然写着:$Claris' Contest$。

吓得我差点手一抖关掉。不过后来想想似乎强到变态的人出的题都不是很不可做?大概是实力越强越能体会弱者的难处吧。

 

 

 看T1:woc 字符串?完蛋完蛋。

T2:什么啊?图上乱搞?

T3:最短路?边都建不出来。

 

回去又读了一遍T1发现是sbDP,一眼切了开始码。结果死调不出来,考试开始25min的时候真的是有点慌,这么水的题别人估计都10min以内解决,我都调了快20min还是过不了手玩样例。好在用了35min调过了。

T2无向图的限制让我很是没思路,于是先把T3暴力打了。打的时候想到可以拆点考虑每个二进制位,但是没想具体实现。

回来搞T2发现$O(n^4)$的暴力很好打,淼之。

然后就假装自己在想题实际上无所事事的过了1h……一直没想出T2其他的可行思路,主要是不知道无向图怎么传递信息(没有拓扑这种好东西)。

之后突然想到可以把$O(n^4)$优化到$O(n^3)$,码了个对拍没出错。$210pts\ get!$

优化到$n^3$之后发现这已经是优化枚举的瓶颈了,更加确定正解不是这个。想了一下$bitset$用于传递环信息但是好像不行。

T3也没有想着拿下一档分,拆点的思路有点偏了。

 

 

然而T2正解就是$bitset$优化三元环计数,T3就是拆点……而且70分很好拿……

 

A.String Master

无脑dp。LCS加一维、多一层循环枚举修改次数即可。复杂度$O(n^3)$。

#include
#include
#include
using namespace std;
const int N=305;
int n,K,dp[N][N][N];
char a[N],b[N];
int main()
{
	scanf("%d%d",&n,&K);
	scanf("%s",a+1);scanf("%s",b+1);
	int ans=0;
	for(int k=0;k<=K;k++)
	{
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				if(a[i]==b[j])dp[i][j][k]=max(dp[i-1][j-1][k]+1,dp[i][j][k]);
				else if(k)
					dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-1][k-1]+1);
				ans=max(ans,dp[i][j][k]);
			}
		}
	}
	cout< 
 

 

B.Tourist Attractions

最暴力的方法当然是四层循环枚举方案。如果记录一下每个点的度数,统计时直接用$deg[x]-1$减去三元环的情况就可以去掉一层循环。但显然我们不能用这样的方式再去一层了。

那么可以只枚举四元环中间的两个点,把他们的度数-1再相乘后减去三元环的情况。怎么求三元环的情况数呢?用bitset维护每个点的联通集合,两个点的bitset与一下就是答案了。

#include
#include
#include
#include
using namespace std;
const int N=1505,M=2500000;
typedef long long ll;
int n;
int to[M],head[N],nxt[M],deg[N],tot;
ll ans;
void add(int x,int y)
{
    to[++tot]=y;
    nxt[tot]=head[x];
    head[x]=tot;
    deg[y]++;
}
char s[N];
bitset link[N];
int main()
{
    /*freopen("dt.in","r",stdin);
    freopen("my.out","w",stdout);*/
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s+1);
        for(int j=1;j<=n;j++)
        {
            int e=s[j]-'0';
            if(e)add(i,j),link[i][j]=1;
        }
    }
    for(int x=1;x<=n;x++)
    {
        for(int i=head[x];i;i=nxt[i])
        {
            int y=to[i];
            ans+=1LL*(deg[x]-1)*(deg[y]-1)-(link[x]&link[y]).count();
        }
    }
    cout< 
 

 

C.Walk

边权为1所以求最短路直接bfs就好了。把二进制数看作集合,那么题目要求的就是一个点要与$val$值是它$val$的子集的点连边。把所有$val$都看作点,对于每个点,让它的$val$对它连边。bfs入队的时候暴力枚举子集就可以让所有相连的点入队,由于每个点只有首次入队是有用的,所以可以把枚举过的子集记忆化一下减少重复操作。

 

#include
#include
#include
#include
#include
using namespace std;
int read()
{
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return x*f;
}
const int N=200005,M=300005;
int n,m,w[N];
int to[M],head[N],nxt[M],tot;
vector g[(1<<20)+5];
void add(int x,int y)
{
    to[++tot]=y;
    nxt[tot]=head[x];
    head[x]=tot;
}
int dis[N],vis[(1<<20)+5];
queue q;
void relink(int val,int x,int pre)
{
    if(vis[val])return ;
    vis[val]=1;
    for(int i=0;i>i)&1)relink(val^(1< 
 

 

你可能感兴趣的:([CSP-S模拟测试48]反思+题解)