1.树的直径
dfs版
#include
using namespace std;
const int maxn = 1e5+5;
vector v[maxn];//邻接表
int deeper = 0; //1.第一次dfs结果为树的最大深度 2.第二次dfs结果为树的直径
int node = 1;//初始化为root
void dfs(int x,int dis){
vis[x] = 1;
bool isLeaf = false;
for(int i=0;i deeper){
deeper = dis;
node = vv;
}
}
vis[x] = 0;
}
int main()[
dfs(1,0);
dfs(node,0);
return 0;
}
bfs版
#include
#include
#include
#include
using namespace std;
struct edge{
int v,w;
edge(int v,int w){
this -> v = v;
this -> w = w;
}
};
vector vec[10001];
int d[10001],ans;
bool vis[10001];
int node; // 记录第一次dfs最远的点
void bfs(int u){
queue q;
q.push(u);
while(!q.empty()){
int x = q.front();
vis[x] = 1;
q.pop();
for(int i = 0;i < (int)vec[x].size();i++){
int y = vec[x][i].v;
if(vis[y]) continue;
d[y] = d[x] + vec[x][i].w;
if(d[y] > ans){
ans = d[y];
node = y;
}
q.push(y);
}
}
}
int main(){
// freopen("test.txt","r",stdin);
int u,v,w;
while(scanf("%d%d%d",&u,&v,&w) == 3){
vec[u].push_back(edge(v,w));
vec[v].push_back(edge(u,w));
}
memset(vis,0,sizeof(vis));
ans = 0;
d[1] = 0;
bfs(1);
memset(vis,0,sizeof(vis));
ans = 0;
d[node] = 0;
bfs(node);
printf("%d\n",ans);
return 0;
}
2.带权并查集
#include
using namespace std;
const int maxn = 1e6+10;
int n,m;//n个顶点 m条边
int father[maxn]; //元素父亲节点
int size[maxn];//集合大小
int maxs[maxn];//集合最大值
int dist[maxn];//元素x到它所在集合根节点的距离
int setNums = 0;//集合总数
//初始化
void init(){
setNums = n;
for(int i=1;i<=n;i++){
father[i] = i;
size[i] = 1;
maxs[i] = i;
dist[i] = 0;
}
}
//查找
int find(int x){
if(father[x] == x){
return x;
}
int y = father[x];
father[x] = find(y);
dist[x] += dist[y]; //x到根的距离 需要加上y到根的距离
return father[x];
}
//合并
void join(int x,int y){
int a = find(x);
int b = find(y);
if(a != b){
setNums--;
father[a] = b;
dist[a] = size[b];
size[b] += size[a];
maxs[b] = max(maxs[a],maxs[b]);
}
}
//查询集合总数量
int findSetnum(){
return setNums;
}
//查询x所在集合的大小(元素数量)
int findSize(int x){
return size(find(x));
}
//查询x所在集合中的最大值
int findSetMax(int x){
return maxs(find(x));
}
//查询x到它的集合的根 的距离
int findDist(int x){
return dist[x];
}
int main(){
return 0;
}
3.最短路
floyd
#include
using namespace std;
const int maxn = 1010;
int g[maxn][maxn];
const int inf = 0x3f3f3f3f;
void init(){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j) g[i][j] = 0;
else g[i][j] == inf;
}
}
}
void floyd(){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
if(g[i][j] > g[i][k] + g[k][i]){
g[i][j] = g[i][k] + g[k][i];
}
}
}
}
}
int main(){
init();
floyd();
return 0;
}
SPFA
void spfa(int s){
memset(inq,0,sizeof(inq));
memset(d,0x3f3f3f3f,sizeof(d));
d[s] = 0;
inq[s] = true;
queue q;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
inq[u] = false;
for(int i=0;i d[u] + v[u][i].w){
d[vv] = d[u] + v[u][i].w;
if(!inq[vv]){
q.push(vv);
inq[vv] = 1;
}
}
}
}
}
dijkstra
bool dijkstra(int s){
memset(vst,0,sizeof(vst));
memset(dist,0x3f3f3f3f,sizeof(dist));
dist[s] = 0;
for(int i=0;i min_heap;
dist[s] = 0;
min_heap.push(node(s,0));
while(!min_heap.empty()){
int v = min_heap.top().u;
min_heap.pop();
if(vst[v]) continue;
vst[v] = true;
for(int j=p[v];j!=-1;j++){
int x = e[j].v;
if(!vst[x] && dist[v] + e[j].w < dist[x]){
dist[x] = dist[v] + e[j].w;
min_heap.push(node(x,dist[x]));
}
}
}
return true;
}
4.tarjan
#include
using namespace std;
const int maxn = 1e5+5;
vector g[maxn];
int belong[maxn],scc = 0;
int idx = 0;
int dfn[maxn],low[maxn];
bool ins[maxn];
stack s;
void tarjan(int u){
dfn[u] = low[u] = ++idx;
s.push(u);
ins[u] = 1;
for(int i=0;i>n>>m;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
idx = 0;
for(int i=1;i<=m;i++){
int u,v;
cin>>u>>v;
g[u].push_back(v);
}
for(int i=1;i<=n;i++){
if(!dfn[i]){
tarjan(i);
}
}
for(int i=1;i<=scc;i++){
cout<<"block "<