Scrapy-redis实现分布式爬虫

Scrapy,Python开发的一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy框架已经可以完成很大的一部分爬虫工作了。但是如果遇到比较大规模的数据爬取,直接可以用上python的多线程/多进程,如果你拥有多台服务器,分布式爬取是最好的解决方式,也是最有效率的方法。
Scrapy-redis是基于redis的一个scrapy组件,scrapy-redis提供了维持待爬取url的去重以及储存requests的指纹验证。原理是:redis维持一个共同的url队列,各个不同机器上的爬虫程序获取到的url都保存在redis的url队列,各个爬虫都从redis的uel队列获取url,并把数据统一保存在同一个数据库里面。
之前听了崔庆才老师的知乎爬虫课程,但是关于利用scrapy-redis构建分布式一直不太清晰。所以下面会利用MongoDB、redis搭建分布式爬虫。

  • 1.scrapy-redis分布式架构图:
    • Scheduler调度器从redis获取请求的url地址,传递给Downloader下载器下载数据网页,然后把数据网页传递给spiders爬虫提取数据逻辑器处理,最后把结构化保存数据的item数据对象经过itemPipeLine保存在redis数据库。
    • 其他机器的item Proccess进程和图上的单一进程相类似,Master主爬虫程序则维持redis数据库的url队列。


      Scrapy-redis实现分布式爬虫_第1张图片
      分布式爬虫架构图
  • 2.准备条件:
1. linux系统机器一台(博主用的是阿里云ECS centos7.2,如需ECS安装的过程可以参照之前的阿里云ECS安装文章)
2. Redis[redis的windows客户端和windows的RedisDesktopMananger]和Linux redis版本
3. Anaconda(windows)和Anaconda(Linux版本)
4  MongoDB(linux版本)
5. Robomongo 0.9.0(mongodb的可视化管理工具)
Scrapy-redis实现分布式爬虫_第2张图片
说走就走!!
  • 3.安装windows的redis客户端以及linux的redis的服务端。

    • 博主安装的版本是 redis2.8.2402和redis可视化工具RedisDesktopManager
    • windows下安装redis以及RedisDesktopManager十分简单,直接下一步下一步就可以完成。
    • 验证redis是否成功,在windows的DOS命令进入你安装redis的目录下,输入以下命令,博主安装目录是D盘的redis目录:


      Scrapy-redis实现分布式爬虫_第3张图片
      启动redis-server
    • redis的二进制安装文件包含了redis的链接客户端,打开另外一个命令行终端,输入如下图的命令。可以连接上本地windows的redis数据库。


      Scrapy-redis实现分布式爬虫_第4张图片
      启动redis客户端
    • 似乎是不是对于DOS命令窗口不太感冒而且也不太好管理,RedisDesktopManager派上用场了。安装完RedisDesktopManager启动如下图,输入如图的信息,即可连接上本地redis数据库:


      Scrapy-redis实现分布式爬虫_第5张图片
      redisdesktop
    • 至此已经完成安装windows的redis数据库。感觉路还长着。


      Scrapy-redis实现分布式爬虫_第6张图片
      任重道远
    1. 在阿里云ECS上面安装Redis:
    • 在xshell登录阿里云ECS终端,运行下面命令安装redis:
    [author@iZpq90f23ft5jyj3s7fmduhZ ~]# yum -y install redis
    
    • 博主的阿里云系统是CentOS7.2,如果你自己的是Ubuntu,可以运行下面的命令安装:
    [author@iZpq90f23ft5jyj3s7fmduhZ ~]$sudo apt-get install redis
    
    • Redis数据库安装完之后,会自动启动。运行下面命令查看redis运行状态。
      [author@iZpq90f23ft5jyj3s7fmduhZ ~]# ps -aux|grep redis
      root     13925  0.0  0.0 112648   964 pts/0    R+   14:42   0:00 grep --color=auto redis
      redis    29418  0.0  0.6 151096 11912 ?        Ssl  Sep22   1:25 /usr/bin/redis-server *:6379
    
    • 如果不设置redis密码,那么跟在大街上裸奔有什么区别。依稀还记得早些时候MongoDB国内外发生拖库事件,所以还是为redis设置密码。默认安装redis的配置文件在/etc/下面,如下所示,然后修改里面的几条信息:
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# vim /etc/redis.conf
     # bind 127.0.0.1(注释绑定的IP地址链接,如果你想只绑定特定的链接IP地址,可以改为自己的IP地址)
       requirepass xxxxxxx(这xxxxxx是设置的密码,把requirepass前面的#去除)
       port 6379(这是连接redis数据库的端口,可以修改为其他的端口,博主采用默认的端口)
       protected-mode no(里面no设置为yes)
    
    • 修改完成,保存退出。重新启动redis服务:
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# service redis restart
    
    Scrapy-redis实现分布式爬虫_第7张图片
    • 使用windows的RedisDesktopManager连接阿里云上面的Redis:
      Scrapy-redis实现分布式爬虫_第8张图片
      连接数据库
    • 意外永远是预料不到的,连接不上。这是因为阿里云的安全规则,要添加开放6379的端口,才能进行连接。


      Scrapy-redis实现分布式爬虫_第9张图片
      悲剧
    • 登录阿里云个人管理控制台,然后添加安全组规则。如下图所示:其中授权对象0.0.0.0/0是指允许所有的IP地址连接redis,端口范围6379/6379就是说只开放6379端口


      Scrapy-redis实现分布式爬虫_第10张图片
      redis开放6379端口号
    • 完成安全组设置,在RedisDesktopManager设置IP地址和密码,即可登录上阿里云的redis数据库:


      Scrapy-redis实现分布式爬虫_第11张图片
      连接上redis数据库
  • 5.安装Anaconda:

    • Anaconda 4.4.0 在windows安装过程很简单,下载好可执行文件,直接下一步下一步就可完成。Anaconda默认包含python解释器,博主选择的是python3.6版,在windows运行一下命令,查看Anaconda安装了什么包:
    C:\User\Username>conda list
    
    • 因为scrapy框架在window安装比较麻烦,经常出现很多不知名的错误依赖,所以选择Anaconda,可以很快安装scrapy,scrapy-reis,pymongo,redis包;当然也可以直接使用pip安装模块包。
    conda install scrapy
    conda install scrapy-redis
    conda install pymongo
    conda install redis  
    
    • Anaconda 4.0.4 linux可执行脚本文件,可以直接在windows下载,然后在通过Filezilla上传到到阿里云ECS。上传到Linux上,执行下面的命令。Anaconda在linux'安装需要手动enter,并且过程中输入是否把conda命令写进环境变量,整个过程,如果遇到询问,直接输入yes即可:
    [author@iZpq90f23ft5jyj3s7fmduhZ ~]# bash Anaconda3-4.4.0-Linux-x86_64.sh
    
    • 安装完Anaconda之后,在命令行窗口输入python,即可发现是python3.6的版本。阿里云ECS CentOS7.2默认的python版本是python2.7.使用anaconda安装pymongo、redis、scrapy、scrapy-redis依赖包。
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# python
      Python 3.6.1 |Anaconda 4.4.0 (64-bit)| (default, May 11 2017, 13:09:58) 
      [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
      Type "help", "copyright", "credits" or "license" for more information.
      >>> 
      >>> 
      [author@iZpq90f23ft5jyj3s7fmduhZ ~]# conda install scrapy
      [author@iZpq90f23ft5jyj3s7fmduhZ ~]# conda install scrapy-redis
      [author@iZpq90f23ft5jyj3s7fmduhZ ~]# conda install pymongo
      [author@iZpq90f23ft5jyj3s7fmduhZ ~]# conda install redis  
    
Scrapy-redis实现分布式爬虫_第12张图片
怎么安装还没有完成
  • 6.在阿里云ECS上面安装MongoDB:
    • 在MongoDB官网下载 mongodb3.4.9,下载完成之后,通过文件FileZilla上传到阿里云ECS
    • 在阿里云ECS运行一下命令安装MongoDB,其中db.createUser方法的db是将来爬虫使用数据库。如果想详细了解db.createUser可以直接到MongoDB文档查阅
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# tar -vxzf  mongodb-linux-x86_64-amazon-3.4.9.tgz
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# mv  mongodb-linux-x86_64-amazon-3.4.9.tgz mongodb
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# cd mongodb
     [author@iZpq90f23ft5jyj3s7fmduhZ mongodb~]# mkdir db
     [author@iZpq90f23ft5jyj3s7fmduhZ mongodb~]# mkdir logs
     [author@iZpq90f23ft5jyj3s7fmduhZ mongodb~]# cd logs
     [author@iZpq90f23ft5jyj3s7fmduhZ logs~]# touch mongodb.log
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# cd ..
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# cd ..
     [author@iZpq90f23ft5jyj3s7fmduhZ mognodb~]# cd bin
     [author@iZpq90f23ft5jyj3s7fmduhZ mognodb bin~]# touch mongodb.conf(创建mongodb的日志保存路径以及数据保存路径)
    # 下面是mongodb.conf的文件内容
      dbpath=/author/mongodb/db()
      logpath=/author/mongodb/logs/mongodb.log
      port=27017
      fork=true
      nohttpinterface=true
    ##############################
     [author@iZpq90f23ft5jyj3s7fmduhZ mongodb bin ~]# ./mongod --config mongodb.conf(启动mongoDB)
     [author@iZpq90f23ft5jyj3s7fmduhZ mongodb bin ~]# ./mongo (启动mongodb客户端)
      MongoDB shell version v3.4.9
      connecting to: mongodb://127.0.0.1:27017
      MongoDB server version: 3.4.9
      > db.createUser({user:"xxx",pwd:"xxx",roles:[{role:"readWrite",db:"zhihu"}]})
     [author@iZpq90f23ft5jyj3s7fmduhZ ~]# kill -9 pid(这里是mongodb的进程id,可以通过ps -aux|grep mongodb查看)
     [author@iZpq90f23ft5jyj3s7fmduhZ mognodb bin~]# ./mongod --config mongodb.conf --auth(--auth以需要授权的方式启动mongodb)
    
  • 7.windows安装 Robomongo可视化工具:
    • 安装Robbomongo过程很简单,就不太再叙述了。安装完之后,其中的username是刚才创建的user,zhihu是要连接的数据库。这里会发现连接时间过长失败,原因也是想Redis一样,阿里云的安全规则限制,所以可以像redis那样设置连接开放27017端口就可以了。


      Scrapy-redis实现分布式爬虫_第13张图片
      登陆

      Scrapy-redis实现分布式爬虫_第14张图片
      登陆成功
    • 终于全部安装完所需要的工具,工欲善其事必先利其器,真的是有苦说不来。


      Scrapy-redis实现分布式爬虫_第15张图片
      没完没了是吧
  • 8.scrapy-redis的源码贴图。这里是崔庆才大神的源码,因为通过抓包分析。知乎的json的格式数据已经改变了以及自己安装的Mongodb需要进行验证,所以自己改写了一部分。崔庆才源码
    • setting.py配置文件部分:
      # -*- coding: utf-8 -*-
      # Scrapy settings for zhihuuser project
      #
      # For simplicity, this file contains only settings considered important or
      # commonly used. You can find more settings consulting the documentation:
      #
      #     http://doc.scrapy.org/en/latest/topics/settings.html
      #     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
      #     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
    
        BOT_NAME = 'zhihuuser'
    
        SPIDER_MODULES = ['zhihuuser.spiders']
        NEWSPIDER_MODULE = 'zhihuuser.spiders'
    
    
      # Crawl responsibly by identifying yourself (and your website) on the user-agent
      # USER_AGENT = 'zhihuuser (+http://www.yourdomain.com)'
      # Obey robots.txt rules
        ROBOTSTXT_OBEY = False
    
      # Configure maximum concurrent requests performed by Scrapy (default: 16)
      #CONCURRENT_REQUESTS = 32
    
      # Configure a delay for requests for the same website (default: 0)
      # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
      # See also autothrottle settings and docs
      #DOWNLOAD_DELAY = 3
      # The download delay setting will honor only one of:
      #CONCURRENT_REQUESTS_PER_DOMAIN = 16
      #CONCURRENT_REQUESTS_PER_IP = 16
      # Disable cookies (enabled by default)
      #COOKIES_ENABLED = False
      # Disable Telnet Console (enabled by default)
      #TELNETCONSOLE_ENABLED = False
      # Override the default request headers:
        DEFAULT_REQUEST_HEADERS = {
         'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
         'Accept-Language':'en',
         'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3)                 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36',
         'authorization':'oauth c3cef7c66a1843f8b3a9e6a1e3160e20'
        }  
      # Enable or disable spider middlewares
      # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
      #SPIDER_MIDDLEWARES = {
      #    'zhihuuser.middlewares.ZhihuuserSpiderMiddleware': 543,
      #}
    
      # Enable or disable downloader middlewares
      # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
      #DOWNLOADER_MIDDLEWARES = {
      #    'zhihuuser.middlewares.MyCustomDownloaderMiddleware': 543,
      #}
    
      # Enable or disable extensions
      # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
      #EXTENSIONS = {
      #    'scrapy.extensions.telnet.TelnetConsole': None,
      #}
    
      # Configure item pipelines
      # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
        ITEM_PIPELINES = {
          'zhihuuser.pipelines.MongoPipeline': 300,
          # 'zhihuuser.pipelines.JsonWriterPipeline': 300,
          'scrapy_redis.pipelines.RedisPipeline': 301
        }
      # Enable and configure the AutoThrottle extension (disabled by default)
      # See http://doc.scrapy.org/en/latest/topics/autothrottle.html
      #AUTOTHROTTLE_ENABLED = True
      # The initial download delay
      #AUTOTHROTTLE_START_DELAY = 5
      # The maximum download delay to be set in case of high latencies
      #AUTOTHROTTLE_MAX_DELAY = 60
      # The average number of requests Scrapy should be sending in parallel to
      # each remote server
      #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
      # Enable showing throttling stats for every response received:
      #AUTOTHROTTLE_DEBUG = False
      # Enable and configure HTTP caching (disabled by default)
      # See http://scrapy.readthedocs.org/en/latest/topics/downloader-        middleware.html#httpcache-middleware-settings
      #HTTPCACHE_ENABLED = True
      #HTTPCACHE_EXPIRATION_SECS = 0
      #HTTPCACHE_DIR = 'httpcache'
      #HTTPCACHE_IGNORE_HTTP_CODES = []
      #HTTPCACHE_STORAGE =  'scrapy.extensions.httpcache.FilesystemCacheStorage'
        MONGO_URI='hostIP'
        MONGO_DATABASE='zhihu'
        MONGO_USER="username"
        MONGO_PASS="password"
        SCHEDULER = "scrapy_redis.scheduler.Scheduler"
        DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
        REDIS_URL = 'redis://username:pass@hostIP:6379'
    
    • Pipelines.py管道部分:
      # -*- coding: utf-8 -*-
      # Define your item pipelines here
      # Don't forget to add your pipeline to the ITEM_PIPELINES setting
      # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
      import pymongo
      class MongoPipeline(object):
          collection_name="users"
          def __init__(self,mongo_uri,mongo_db,mongo_user,mongo_pass):
            self.mongo_uri=mongo_uri
            self.mongo_db=mongo_db
            self.mongo_user=mongo_user
            self.mongo_pass=mongo_pass
        @classmethod
        def from_crawler(cls,crawler):
            return cls(mongo_uri=crawler.settings.get('MONGO_URI'),mongo_db=crawler.settings.get('MONGO_DATABASE'),mongo_user=crawler.settings.get("MONGO_USER"),mongo_pass=crawler.settings.get("MONGO_PASS"))
        def open_spider(self, spider):
            self.client = pymongo.MongoClient(self.mongo_uri)
            self.db = self.client[self.mongo_db]
            self.db.authenticate(self.mongo_user,self.mongo_pass)       
        def close_spider(self, spider):
            self.client.close()
        def process_item(self, item, spider):
            # self.db[self.collection_name].update({'url_token': item['url_token']}, {'$set': dict(item)}, True)
            # return item
            self.db[self.collection_name].insert(dict(item))
            return item
      # import json
      # class JsonWriterPipeline(object):
      #     def __init__(self):
      #         self.file = open('data.json', 'w',encoding='UTF-8')
      #     def process_item(self, item, spider):
      #         #self.file.write("我开始打印了\n")
      #         line = json.dumps(dict(item)) + "\n"
      #         self.file.write(line)
      #         return item
    
    • items部分,知乎json数据已经改变,所以改写了这部分:
    # -*- coding: utf-8 -*-
    # Define here the models for your scraped items
    # See documentation in:
    # http://doc.scrapy.org/en/latest/topics/items.html
    from scrapy import Item,Field
    class ZhihuuserItem(Item):
       allow_message=Field()
       answer_count=Field()
       articles_count=Field()
       avatar_url_template=Field()
       badge=Field()
       employments=Field()
       follower_count=Field()
       gender=Field()
       headline=Field()
       id=Field()
       is_advertiser=Field()
       is_blocking=Field()
       is_followed=Field()
       is_following=Field()
       url=Field()
       url_token=Field()
       user_type=Field()
    
    • zhihu.py即spiders部分:
      # -*- coding: utf-8 -*-
      from  scrapy import Spider,Request
      import json
      from zhihuuser.items import ZhihuuserItem
      class ZhihuSpider(Spider):
        name = "zhihu"
        allowed_domains = ["www.zhihu.com"]
        start_urls = ['http://www.zhihu.com/']
        #获取用户的关注列表
        follows_url="https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}"
        #用户的详细信息
        user_url="https://www.zhihu.com/api/v4/members/{user}?include={include}"
        #开始用户名
        start_user="zhang-yu-meng-7"
        #用户详细信息include参数
        user_query = 'locations,employments,gender,educations,business,voteup_count,thanked_Count,follower_count,following_count,cover_url,following_topic_count,following_question_count,following_favlists_count,following_columns_count,answer_count,articles_count,pins_count,question_count,commercial_question_count,favorite_count,favorited_count,logs_count,marked_answers_count,marked_answers_text,message_thread_token,account_status,is_active,is_force_renamed,is_bind_sina,sina_weibo_url,sina_weibo_name,show_sina_weibo,is_blocking,is_blocked,is_following,is_followed,mutual_followees_count,vote_to_count,vote_from_count,thank_to_count,thank_from_count,thanked_count,description,hosted_live_count,participated_live_count,allow_message,industry_category,org_name,org_homepage,badge[?(type=best_answerer)].topics'
      #获取关注人的include的参数
      follows_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'
      followers_url = 'https://www.zhihu.com/api/v4/members/{user}/followers?include={include}&offset={offset}&limit={limit}'
      followers_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'
      def start_requests(self):
          yield Request(self.user_url.format(user=self.start_user,include=self.user_query),self.parse_user)
          yield Request(self.followers_url.format(user=self.start_user, include=self.followers_query, limit=20, offset=0),self.parse_followers)
          yield Request(self.follows_url.format(user=self.start_user,include=self.follows_query,limit=20,offset=0),self.parse_follows)
      #保存用户详细信息
      def parse_user(self, response):
          result=json.loads(response.text)
          item=ZhihuuserItem()
          for field in item.fields:
              if field in result.keys():
                  item[field]=result.get(field)
          yield item
      #获取用户关注用户列表
      def parse_follows(self,response):
          results=json.loads(response.text)
          if 'data' in results.keys():
              for result in results.get('data'):
                  yield Request(self.user_url.format(user=result.get('url_token'),include=self.user_query),self.parse_user)
          if 'paging' in results.keys()and results.get('paging').get('is_end')==False:
              next_page=results.get('paging').get('next')
              yield Request(next_page,self.parse_follows)
      def parse_followers(self, response):
          results = json.loads(response.text)
          if 'data' in results.keys():
              for result in results.get('data'):
                  yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query),self.parse_user)
          if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
              next_page = results.get('paging').get('next')
              yield Request(next_page, self.parse_followers)
    
  1. 在windows和linux中分别启动爬虫进程,然后查看获取到的数据:
  • windows启动爬虫程序:
scrapy crawl zhihu
  • 阿里云linux启动爬虫程序
scrapy crawl zhihu
  • 查看redis:


    Scrapy-redis实现分布式爬虫_第16张图片
    redis
  • 查看mongodb数据库


    Scrapy-redis实现分布式爬虫_第17张图片
    数据

    Scrapy-redis实现分布式爬虫_第18张图片

至此已经完成了scrapy-redis分布式的配置
本文参考: 崔庆才博客

你可能感兴趣的:(Scrapy-redis实现分布式爬虫)