- 运筹学的第一课:单纯形法
ordinary_brony
研究生课堂学习笔记算法经验分享其他
文章目录导读单纯形法简介单纯形法的步骤简介单纯形法的一些说明决策变量基变量工艺常数右端常数空白处θ\thetaθ检验数把其中的一些部分组合起来约束方程典则形式计算步骤判断条件(一)出基和进基矩阵变换判断条件(二)写出结果总结导读运筹学第一课会给你讲线性规划,也就是从初中以来我们拿多元一次方程组做的“旅游叫车问题”、“投资问题”等等。相信在这个时候,每个人的第一印象是:我感觉我行了。然后老师就开始讲
- 运筹学——线性规划
枠成
运筹学数学建模其他
仅供自学使用,各位观众自行参考Reference:中国大学mooc管理运筹学韩伯棠https://wenku.baidu.com/view/2e7891961a37f111f1855b46.html#https://zhuanlan.zhihu.com/p/104697552目录线性规划步骤:主要应用:单纯性法求目标函数值最小的线性规划问题解的最终结果情况单纯形法的灵敏度分析python求解线性规
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 利用单纯形法进行线性规划求解
Metaphysicist.
人工智能算法机器学习最优化原理线性规划matlab
作业要求例16.5:理论推导本作业题的目的分别利用两阶段修正单纯形法与两阶段仿射尺度法对线性规划问题进行求解。两阶段修正单纯形法是一种求解线性规划问题的方法,它主要用于处理约束系数矩阵不包含单位矩阵(没有明显的基本可行解)的情况,也就是无法直接得到初始基可行解的情况。它分为两个阶段:第一阶段:引入人工变量,构造一个只含有人工变量的目标函数,并求其最小值。如果最小值为零,则说明原问题有基可行解,可以
- 线性规划求解
小手指动起来
课程总结
线性规划求解线性规划概念介绍模型建立步骤基本的线性模型例子模型一般形式和标准形式单纯形法、大M法、两阶段法总结线性规划概念介绍线性规划是优化问题的特殊情形,其模型中的目标函数和约束条件均为决策变量的线性函数。模型建立步骤确定决策变量确定目标函数确定约束条件基本的线性模型例子列1【合理下料问题】用长度为500厘米的条材,截成长度为98厘米和78厘米两种毛胚,要求长98厘米的毛胚1000根,78厘米长
- 单纯形法迭代原理及解的判定
思想在拧紧
运筹运筹学单纯形法
写于:2024年1月4日晚修改:基于以下线性规划做分析,maxz=∑j=1ncjxjs.t.{∑j=1naijxj≤bi(i=1,2,…,m)xj≥0(j=1,2,…,n)\begin{aligned}&\max\mathrm{z}=\sum_{j=1}^nc_jx_j\\&\text{s.t.}\left\{\begin{array}{l}\sum_{j=1}^na_{ij}x_j\leqb_
- 【最优化】从图形理解单纯形法——不用单纯形表来解线性规划问题 / 单纯形表的本质与直觉
x66ccff
最优化最优化
66ccff单纯形法是解线性规划问题(LP)的最经典方法,很多人都了解单纯形法是用单纯形表来进行求解的,但是不了解背后的原理。这篇博文介绍单纯型表的直觉。需要的前置知识你需要了解:单纯形法实际上是在“爬山”,从任意一个边界点开始,每次沿着边界走,直到目标值无法继续上升。线性规划由于线性性质,问题对应的单纯形上的边界关于函数值的变化都是单调的。可以引入松弛变量将不等式约束转化为等式,以及所有变量>=
- 算法中的最优化方法与实现(第3课 二次型规划)
komjay
算法中的最优化方法与实现算法
一、学习目标1.了解二次型问题的内容2.了解改进单纯形法解决二次型问题的过程二、二次型问题1.与线性问题相同,二次型问题的描述形式也有两类(type1:一般形式,type2:标准形式):其中H矩阵是二次项的参数矩阵,该项会直接导致整个模型是否存在最优解的问题。下面展示几个特殊二次项的图像:下面左图存在多个极值点,右图则不存在最优值:2.关于将一般形式转化为标准形式,其方式与线性问题一样:三、改进单
- 单纯型法在求逆矩阵时的数值问题
Lins号丹
运筹优化决策#数学建模单纯形法数值问题
求解线性规划的一个经典且成熟的算法是单纯形法,这也是很多线性规划求解器的一个核心算法。其中,在判断基解的出入基操作时,需要计算并判断非基变量的检验数的大小和正负符号,在计算检验数的时候需要通过约束条件,用非基变量的表达式替代基变量。例如这样一般的约束形式:Ax=bAx=bAx=b将xxx拆成基变量和非基变量,写成如下形式:BxB+NxN=bBx_B+Nx_N=bBxB+NxN=b用非基变量表达式表
- 整数规划-割平面法
Kilig*
线性规划数学建模数学建模
整数规划-割平面法割平面法思想Gomory's割平面法原理实例谨以此博客作为学习期间的记录。割平面法思想在之前,梳理了分支定界法的流程:分支定界法除了分支定界法,割平面法也是求解整数规划的另一个利器。我们已经知道,线性规划的可行域是一个凸集,而最优点将会在凸集的某个顶点处取到。而如果凸集的顶点都是整数点,那这样的话只要使用单纯形法即可求得整数最优解。就像下图的凸包所示,在实际情况中,线性规划的可行
- 详解运筹学单纯形法
UCAS_sqs
算法最优化算法
1.在开始之前先抛出几个问题:tips:Q:question,A:answerQ1:单纯形法算法核心思想是什么?Q2:可以用一个实际的场景去解释单纯形法吗?Q3:单纯形法一定在边界处取得最优解吗?Q4:单纯形法通常用于求解什么类型的问题?A1:单纯形法算法核心思想是什么?单纯形法(SimplexMethod)的核心思想是在线性规划问题的可行域的顶点之间进行系统的搜索,以找到使目标函数值最优(最大化
- 凸优化问题求解(2)
碧蓝的天空丶
算法笔记
目录3.内点法3.1线性规划的内点法4.等式约束凸优化问题4.1解空间法4.2对偶方法5.等式约束凸优化问题的Netwon法5.1等式约束凸二次规划的精确解5.2基于局部二次近似的Newton法3.内点法3.1线性规划的内点法内点法的基本思想单纯形法从顶点到顶点搜索最优解-当初始点远离最优解时-需要很长的搜索代价X而内点法在可行域内部进行搜索迭代的算法X设当前点x0是可行集D的一个相对内点-根据优
- 算法中的最优化方法课程复习
Kilig*
算法
算法中的最优化方法课程复习单模函数、拟凸函数、凸函数证明证明一个线性函数与一个凸函数的和也是凸的梯度线性规划标准形式以及如何标准化标准形式常见标准化方法线性化技巧单纯形法二次规划无约束优化Nelder-Mead线搜索FR共轭梯度法例题优化算法的选择、停止准则算法选择停止准则例题单模函数、拟凸函数、凸函数单模函数注意符号是小于等于,可以取等于号。拟凸函数凸函数例子1根据上面的性质判断,这个函数同时是
- 幺模矩阵-线性规划的整数解特性
Kilig*
数学建模线性规划矩阵线性代数
百度百科:幺模矩阵在线性规划问题中,如果A为幺模矩阵,那么该问题具有最优整数解特性。也就是说使用单纯形法进行求解,得到的解即为整数解。无需再特定使用整数规划方法。mincTxs.t.{Ax≥bx≥0\begin{align*}min\quad&\mathbf{c}^T\mathbf{x}\\s.t.\quad&\begin{cases}\mathbf{Ax}\geq\mathbf{b}\\\mat
- Google OR-Tools(二) 线性优化Linear Optimization
11c170319da1
本文参考GoogleOR-Tools官网文档介绍OR-Tools的使用方法。1线性规划问题线性规划是优化问题里最简单的一种形式,需要极大化或极小化的目标函数是线性的,而约束条件由一组线性等式或不等式组成。很多复杂的非线性规划问题都会需要将其装换成线性规划问题来求解。求解线性规划问题最常用的算法是单纯形法(包括了单纯形表、修正单纯形法、对偶单纯形法等),除此之外还有内点法、灵敏度分析等算法。线性规划
- 【智能优化算法】基于混沌策略和单纯形法改进的鲸鱼优化算法求解单目标优化问题(CSWOA)附matlab代码
matlab科研助手
1简介为解决鲸鱼优化算法收敛速度慢和寻优精度低等问题,提出了一种基于混沌策略和单纯形法优化的鲸鱼优化算法(whaleoptimizationalgorithmbasedonchaosoptimizationandsimplexoptimization,CSWOA).首先,采用混沌反向学习策略初始化鲸鱼种群个体,降低随机化的原始种群对算法收敛的影响;然后,引入一种自适应权重策略,平衡算法的全局寻优和
- 10分钟掌握对偶单纯形法
咖瑞芝
运筹学矩阵算法动态规划
只听名字的话会感觉对偶单纯形法和对偶问题关系很大,其实不然(想要了解对偶问题的话可以看我之前的文章)。对偶单纯形法在我看来和大M法以及两阶段法很像,都是用来补充纯粹的单纯形法无法解决特殊问题的缺陷。而且对偶单纯形法更加“强大”,因为它可以在等式右端(b)为负值时直接求解,这也是选择使用它的大多数场景。接下来以下图中题为例直接进行讲解:设:对偶法=对偶单纯形法第一步:与单纯形法一样,对偶法第一步仍然
- 10分钟也不一定学会的灵敏度分析
咖瑞芝
运筹学线性代数算法线性规划
灵敏度分析可谓是线性规划中的重难点了,不仅将之前的知识汇总起来,更是考试必考的大题(出题人基本都是先让用单纯形法解出线性规划问题后,紧接着剩下的2,3小问均是灵敏度分析解题)。博主写这一篇博文也是走走停停耽误了很久,前前后后复习了多次QaQ。接下来我们还是提出几个问题:1.灵敏度分析对应的是怎样的问题?2.灵敏度分析法解决问题有怎样的优点?不用该方法还有其他方法吗?3.灵敏度分析类的问题有哪几类?
- Nelder-Mead算法(智能优化之下山单纯形法)
想不到名字222
算法python
Nelder-Mead算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值Nelder-Mead方法也称下山单纯形法,是由JohnNelder&RogerMead于1965年提出的一种求解数值优化问题的启发式搜索给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为开始按以下算
- 【管理运筹学】运筹学“背诵手册”(一) | 线性规划问题与单纯形法
Douglassssssss
#运筹学运筹学考研“背诵手册”线性规划单纯形法
引言同数学一样,运筹学尽管大量的是计算题,但这些算法步骤及思路,还有涉及到的知识点如果不去整理和记忆,很难在短时间内正确求解出考题。比如指派问题的匈牙利法、排队论公式、运输问题的表上作业法等等,都是需要记忆的部分。下面就把个人认为容易遗忘的点整理起来,方便日后随时查阅。一、线性规划问题与单纯形法线性规划模型三个特点:1.有决策变量,一般非负;2.存在约束条件,用线性等式或不等式来表示;3.有目标,
- 当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力
散一世繁华,颠半世琉璃
数学算法
传统的解决线性规划问题的方法是图形法、代数法求解,但是图形法解题有极大的局限性,因为一旦变量超过3个,基本上就无法通过图形解决,而代数法虽然可以解题,但对于复杂的问题可能效果较差甚至无法求解!相比图形法和代数法,单纯形法解决线性规划问题具有以下优势:理论基础强:单纯形法是基于线性规划的基本理论,通过系统的迭代过程逐步逼近最优解。它是一种可行的、确定性的算法,能够找到问题的最优解或者确定问题是无界或
- 示例与原理详解 二十世纪最伟大的十大算法 00记 —— 目录
Eloudy
algorithm
一、1946蒙特卡洛方法[1946:JohnvonNeumann,StanUlam,andNickMetropolis,allattheLosAlamosScientificLaboratory,cookuptheMetropolisalgorithm,alsoknownastheMonteCarlomethod.]二、1947单纯形法[1947:GeorgeDantzig,attheRANDCo
- 数学建模 | MATLAB学习 | 非线性规划
Shannon333
数学建模MATLAB
如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不像线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。非线性规格的MATLAB解法Matlab中的命令是[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,opt
- 线性规划之单纯形法
学无止境jl
算法算法线性规划
一、前言迭代改进思想是算法设计中常用的求解最优问题的方法,一般思路是:任取一个可行解判断可行解是否是最优的,若是,算法结束若不是,找到一个比当前可行解更好的可行解,并替代它,继续步骤2事实上,判断可行解的过程就能找到(或不能)一个更好的可行解。线性规划问题,是在约束条件下求最大值或最小值的问题。例如显然z=3x+5y的x越大越好,y越大越好。x=3,y=1得zmax=14而解线性规划问题最好的方法
- 线性规划及其对偶问题(单纯形法|人工变量|对偶理论)
bujbujbiu
线性规划单纯形法运筹优化
文章目录(一)线性规划1.化标准型2.图解法3.单纯形法原理3.1最优判断(检验数)3.2单纯形法步骤4.单纯形法的进一步讨论4.1大M法4.2两阶段法4.3退化解(二)对偶问题1.线性规划的对偶问题2.单纯形法矩阵描述3.线性规划对偶理论3.1对称性3.2弱对偶性3.3最优性定理3.4对偶定理(强对偶性)3.5互补松弛性4.影子价格5.对偶单纯形法5.1对偶单纯形法步骤5.2对偶单纯形法的特点6
- 【算法+工程】单纯形法.md
longgb246
一、优化问题标准型1.1问题例子某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。image.png该工厂每生产一件产品Ⅰ可获利2元,每生产一件产品Ⅱ可获利3元,问应如何安排计划使该工厂获利最多?1.2数学形式上述问题可以用以下形式表示,其中$x_{1}$、$x_{2}$分别表示生产Ⅰ、Ⅱ产品的个数:目标函数:$$max(z=2x_{
- 【最优化笔记4】线性规划--对偶理论
飞今天也很开心
最优化学习笔记算法
对偶问题(必考点),要会把原问题的对偶问题写出来,知道对偶定理,会对偶单纯形法。每一个线性规划问题,都有一个被称为对偶的线性规划问题与它相对应,二者可以看做是对同一个问题从不同的角度所进行的分析与研究。文章目录1.对偶线性规划问题1.1对称形式的对偶问题1.2非对称形式的对偶问题2.对偶定理2.1引理1(弱对偶定理)2.2引理1的推论2.3线性规划的对偶定理(强对偶定理)3.互补松弛定理3.1非对
- 线性规划模型-应用篇
我在开水团做运筹
#运筹优化运筹优化线性规划工程应用
文章目录模型特点使用技巧工具包和求解器模型线性化应用实例经验总结模型特点上一篇中,详细阐述了线性规划问题和单纯形法的算法原理,本文将着重介绍线性模型在工业场景中的应用。首先需要说清楚的是,为什么线性模型深受研发人员青睐。从已有的经验来看,主要原因有三个:(1)线性规划的局部最优解就是全局最优解;(2)计算速度快;(3)研发成本低。为了说明第一点,需要先引入一个概念:凸函数。凸函数的定义为:设函数f
- 线性规划和单纯形法-原理篇
我在开水团做运筹
#运筹优化运筹优化单纯形法线性规划
文章目录引言线性规划标准型问题特点单纯形法引言很多运筹学的教材都是从线性规划开始的,我平时做算法策略的落地应用时也研发了一部分基于线性规划的技术方案。可以说,如果搞不懂线性规划,很难成为一名优秀的运筹优化算法工程师。但是我在体系化学习时,却先在其他地方转了一大圈,才来到这里。主要原因是,这线性规划的原理着实有点难,之前看了很多遍,总有种好像懂了但又没完全懂的挫败感。痛定思痛下终于决定,还是从最简单
- 数学建模(五)非线性规划
向岸看
数学建模数学建模
课程推荐:13非线性规划算法在数学建模中的应用与编程实现_哔哩哔哩_bilibili一、非线性规划模型如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不像线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。1.1案例投资决策问题:某企业有n个项目可供选择投资,
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st