python+opencv模拟生成运动模糊核

参考:OPENCV2学习(1)_生成运动模糊核(OPENCV2 实现Matlab中fspecial的motion功能)

运动模糊时,模糊后图片某点的值应该与原图沿运动角度方向前面的点有关,并且越近邻影响越大,即权值越大。所以除了确定卷积核之外,还确定了锚点(anchor)

python+opencv模拟生成运动模糊核_第1张图片

import math
import numpy as np
import cv2
#生成卷积核和锚点
def genaratePsf(length,angle):
    EPS=np.finfo(float).eps                                 
    alpha = (angle-math.floor(angle/ 180) *180) /180* math.pi
    cosalpha = math.cos(alpha)  
    sinalpha = math.sin(alpha)  
    if cosalpha < 0:
        xsign = -1
    elif angle == 90:
        xsign = 0
    else:  
        xsign = 1
    psfwdt = 1;  
    #模糊核大小
    sx = int(math.fabs(length*cosalpha + psfwdt*xsign - length*EPS))  
    sy = int(math.fabs(length*sinalpha + psfwdt - length*EPS))
    psf1=np.zeros((sy,sx))
#psf1是左上角的权值较大,越往右下角权值越小的核。 #这时运动像是从右下角到左上角移动 for i in range(0,sy): for j in range(0,sx): psf1[i][j] = i*math.fabs(cosalpha) - j*sinalpha rad = math.sqrt(i*i + j*j) if rad >= half and math.fabs(psf1[i][j]) <= psfwdt: temp = half - math.fabs((j + psf1[i][j] * sinalpha) / cosalpha) psf1[i][j] = math.sqrt(psf1[i][j] * psf1[i][j] + temp*temp) psf1[i][j] = psfwdt + EPS - math.fabs(psf1[i][j]); if psf1[i][j] < 0: psf1[i][j] = 0 #运动方向是往左上运动,锚点在(0,0) anchor=(0,0) #运动方向是往右上角移动,锚点一个在右上角
#同时,左右翻转核函数,使得越靠近锚点,权值越大
if angle<90 and angle>0: psf1=np.fliplr(psf1) anchor=(psf1.shape[1]-1,0) elif angle>-90 and angle<0:#同理:往右下角移动 psf1=np.flipud(psf1) psf1=np.fliplr(psf1) anchor=(psf1.shape[1]-1,psf1.shape[0]-1) elif anchor<-90:#同理:往左下角移动 psf1=np.flipud(psf1) anchor=(0,psf1.shape[0]-1) psf1=psf1/psf1.sum() return psf1,anchor

demo:

import motionBlur
kernel,anchor=motionBlur.genaratePsf(20,40)
motion_blur=cv2.filter2D(im,-1,kernel,anchor=anchor)

python+opencv模拟生成运动模糊核_第2张图片             python+opencv模拟生成运动模糊核_第3张图片

至于核权值的计算完全使用参考的博文。

你可能感兴趣的:(python+opencv模拟生成运动模糊核)