线程的并发工具类
一、CountDownLatch
【1】CountDownLatch是什么?
CountDownLatch,英文翻译为倒计时锁存器,是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
闭锁可以延迟线程的进度直到其到达终止状态,闭锁可以用来确保某些活动直到其他活动都完成才继续执行:
- 确保某个计算在其需要的所有资源都被初始化之后才继续执行;
- 确保某个服务在其依赖的所有其他服务都已经启动之后才启动;
- 等待直到某个操作所有参与者都准备就绪再继续执行;
CountDownLatch有一个正数计数器,countDown()方法对计数器做减操作,await()方法等待计数器达到0。所有await的线程都会阻塞直到计数器为0或者等待线程中断或者超时。
闭锁(倒计时锁)主要用来保证完成某个任务的先决条件满足。是一个同步工具类,用来协调多个线程之间的同步。这个工具通常用来控制线程等待,它可以让某一个线程等待直到倒计时结束,再开始执行。
【2】CountDownLatch的两种典型用法
①某一线程在开始运行前等待n个线程执行完毕。
将 CountDownLatch 的计数器初始化为n :new CountDownLatch(n),每当一个任务线程执行完毕,就将计数器减1 countdownlatch.countDown(),当计数器的值变为0时,在CountDownLatch上 await() 的线程就会被唤醒。一个典型应用场景就是启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行。
②实现多个线程开始执行任务的最大并行性。
注意是并行性,不是并发,强调的是多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。做法是初始化一个共享的 CountDownLatch 对象,将其计数器初始化为 1 :new CountDownLatch(1),多个线程在开始执行任务前首先 coundownlatch.await(),当主线程调用 countDown() 时,计数器变为0,多个线程同时被唤醒。
如下例所示,在多线程运行的情况下,计算多线程耗费的时间:
public class TestCountDownLatch {
//CountDownLatch 为唯一的、共享的资源
static CountDownLatch countDownLatch = new CountDownLatch(5);
static class LatchDemo extends Thread{
@Override
public void run() {
int sum = 0;
for (int i = 0; i < 1000000; i++) {
sum++;
}
System.out.println(getName()+"计算结果:"+sum);
countDownLatch.countDown();
}
}
public static void main(String[] args) throws InterruptedException {
long begin = System.currentTimeMillis();
System.out.println("开始了-----"+begin);
for (int i = 0; i < 5; i++) {
new LatchDemo().start();
}
countDownLatch.await();
long end = System.currentTimeMillis();
System.out.println("结束了-----"+end);
System.out.println("总共用时:"+(end-begin));
}
}
/**
开始了-----1571144894551
Thread-3计算结果:1000000
Thread-0计算结果:1000000
Thread-1计算结果:1000000
Thread-2计算结果:1000000
Thread-4计算结果:1000000
结束了-----1571144894559
总共用时:8
*/
二、CyclicBarrier
【1】CyclicBarrier是什么?
CyclicBarrier即栅栏类,与CountDownLatch类似。它能阻塞一组线程直到某个事件的发生。栅栏与闭锁的关键区别在于,所有的线程必须同时到达栅栏位置,才能继续执行。
CyclicBarrier可以使一定数量的线程反复地在栅栏位置处汇集。当线程到达栅栏位置时将调用await方法,这个方法将阻塞直到所有线程都到达栅栏位置。如果所有线程都到达栅栏位置,那么栅栏将打开,此时所有的线程都将被释放,而栅栏将被重置以便下次使用。
【2】CyclicBarrier构造方法
public CyclicBarrier(int parties) {
this(parties, null);
}
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
CyclicBarrier默认的构造方法是CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程使用await()方法告诉CyclicBarrier我已经到达了屏障,然后当前线程被阻塞。
CyclicBarrier的另一个构造函数CyclicBarrier(int parties, Runnable barrierAction),用于线程到达屏障时,优先执行barrierAction,方便处理更复杂的业务场景。
【3】CyclicBarrier应用示例
public class CyclicBarrierTest {
// 自定义工作线程
private static class Worker extends Thread {
private CyclicBarrier cyclicBarrier;
public Worker(CyclicBarrier cyclicBarrier) {
this.cyclicBarrier = cyclicBarrier;
}
@Override
public void run() {
super.run();
try {
System.out.println(Thread.currentThread().getName() + "开始等待其他线程");
cyclicBarrier.await();
System.out.println(Thread.currentThread().getName() + "开始执行");
// 工作线程开始处理,这里用Thread.sleep()来模拟业务处理
Thread.sleep(1000);
System.out.println(Thread.currentThread().getName() + "执行完毕");
} catch (Exception e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) {
int threadCount = 3;
CyclicBarrier cyclicBarrier = new CyclicBarrier(threadCount);
for (int i = 0; i < threadCount; i++) {
System.out.println("创建工作线程" + i);
Worker worker = new Worker(cyclicBarrier);
worker.start();
}
}
}
/**
创建工作线程0
创建工作线程1
Thread-0开始等待其他线程
创建工作线程2
Thread-1开始等待其他线程
Thread-2开始等待其他线程
Thread-2开始执行
Thread-0开始执行
Thread-1开始执行
Thread-1执行完毕
Thread-0执行完毕
Thread-2执行完毕
*/
在上述代码中,我们自定义的工作线程必须要等所有参与线程开始之后才可以执行,我们可以使用CyclicBarrier类来帮助我们完成。从程序的执行结果中也可以看出,所有的工作线程都运行await()方法之后都到达了栅栏位置,然后,3个工作线程才开始执行业务处理。
【4】CyclicBarrier和CountDownLatch的区别
- CountDownLatch的计数器只能使用一次,而CyclicBarrier的计数器可以使用reset()方法重置,可以使用多次,所以CyclicBarrier能够处理更为复杂的场景;
- CyclicBarrier还提供了一些其他有用的方法,比如getNumberWaiting()方法可以获得CyclicBarrier阻塞的线程数量,isBroken()方法用来了解阻塞的线程是否被中断;
- CountDownLatch允许一个或多个线程等待一组事件的产生,而CyclicBarrier用于等待其他线程运行到栅栏位置。
三、Semaphore
【1】Semaphore是什么?
信号量(Semaphore),又被称为信号灯,在多线程环境下用于协调各个线程, 以保证它们能够正确、合理的使用公共资源。信号量维护了一个许可集,我们在初始化Semaphore时需要为这个许可集传入一个数量值,该数量值代表同一时间能访问共享资源的线程数量。
【2】Semaphore基本用法
线程可以通过acquire()方法获取到一个许可,然后对共享资源进行操作,注意如果许可集已分配完了,那么线程将进入等待状态,直到其他线程释放许可才有机会再获取许可,线程释放一个许可通过release()方法完成,"许可"将被归还给Semaphore。
【3】Semaphore实现互斥锁
public class TestSemaphore {
//初始化为1,互斥信号量
private final static Semaphore mutex = new Semaphore(1);
static class thread extends Thread{
@Override
public void run() {
try {
mutex.acquire();
System.out.println(getName()+"开始工作");
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
//使用完成释放锁
mutex.release();
System.out.println("锁释放!!!");
}
}
}
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
new Thread(new thread(),String.valueOf(i)).start();
}
}
}
创建一个数量为1的互斥信号量Semaphore,然后并发执行10个线程,在线程中利用Semaphore控制线程的并发执行,因为信号量数值只有1,因此每次只能一条线程执行,其他线程进入等待状态。
四、Callable、Future和FutureTask
Future接口,一般都是取回Callable执行的状态用的。其中的主要方法:
- cancel,取消Callable的执行,当Callable还没有完成时
- get,获得Callable的返回值
- isCanceled,判断是否取消了
- isDone,判断是否完成