Hive表的定义,删除、修改

Hive表的定义、删除

创建表

只涉及简单的建表,不涉及分区等复杂操作。

1. 建表语句

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name    -- (Note: TEMPORARY available in Hive 0.14.0 and later)
  [(col_name data_type [COMMENT col_comment], ... [constraint_specification])]
  [COMMENT table_comment]
  [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
  [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
  [SKEWED BY (col_name, col_name, ...)                  -- (Note: Available in Hive 0.10.0 and later)]
     ON ((col_value, col_value, ...), (col_value, col_value, ...), ...)
     [STORED AS DIRECTORIES]
  [
   [ROW FORMAT row_format] 
   [STORED AS file_format]
     | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)]  -- (Note: Available in Hive 0.6.0 and later)
  ]
  [LOCATION hdfs_path]
  [TBLPROPERTIES (property_name=property_value, ...)]   -- (Note: Available in Hive 0.6.0 and later)
  [AS select_statement];   -- (Note: Available in Hive 0.5.0 and later; not supported for external tables)

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
  LIKE existing_table_or_view_name
  [LOCATION hdfs_path];

data_type
  : primitive_type
  | array_type
  | map_type
  | struct_type
  | union_type  -- (Note: Available in Hive 0.7.0 and later)

primitive_type
  : TINYINT
  | SMALLINT
  | INT
  | BIGINT
  | BOOLEAN
  | FLOAT
  | DOUBLE
  | DOUBLE PRECISION -- (Note: Available in Hive 2.2.0 and later)
  | STRING
  | BINARY      -- (Note: Available in Hive 0.8.0 and later)
  | TIMESTAMP   -- (Note: Available in Hive 0.8.0 and later)
  | DECIMAL     -- (Note: Available in Hive 0.11.0 and later)
  | DECIMAL(precision, scale)  -- (Note: Available in Hive 0.13.0 and later)
  | DATE        -- (Note: Available in Hive 0.12.0 and later)
  | VARCHAR     -- (Note: Available in Hive 0.12.0 and later)
  | CHAR        -- (Note: Available in Hive 0.13.0 and later)

array_type
  : ARRAY < data_type >

map_type
  : MAP < primitive_type, data_type >

struct_type
  : STRUCT < col_name : data_type [COMMENT col_comment], ...>

union_type
   : UNIONTYPE < data_type, data_type, ... >  -- (Note: Available in Hive 0.7.0 and later)

row_format
  : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
        [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
        [NULL DEFINED AS char]   -- (Note: Available in Hive 0.13 and later)
  | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

file_format:
  : SEQUENCEFILE
  | TEXTFILE    -- (Default, depending on hive.default.fileformat configuration)
  | RCFILE      -- (Note: Available in Hive 0.6.0 and later)
  | ORC         -- (Note: Available in Hive 0.11.0 and later)
  | PARQUET     -- (Note: Available in Hive 0.13.0 and later)
  | AVRO        -- (Note: Available in Hive 0.14.0 and later)
  | JSONFILE    -- (Note: Available in Hive 4.0.0 and later)
  | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname

constraint_specification:
  : [, PRIMARY KEY (col_name, ...) DISABLE NOVALIDATE ]
    [, CONSTRAINT constraint_name FOREIGN KEY (col_name, ...) REFERENCES table_name(col_name, ...) DISABLE NOVALIDATE 

2. row_format说明

  • 功能说明:用于指定相关分隔符
  • row_format
FIELDS TERMINATED BY  '$'			/*使用$作为字段分隔符*/
MAP KEYS TERMINATED BY '$'  		/*使用$作为map解析数据时的key value分隔符*/
LINES TERMINATED BY '$'				/*使用$作为行与行分隔符*/
COLLECTION ITEMS TERMINATED BY '$'	/*使用$作为 Array 中的各元素、 Struct 中的各元素、各个map之间的分隔符*/

3. file_format说明

  • 功能说明:指定HDFS文件存放的格式

4. 外部表说明(EXTERNAL)

  • 功能说明:使用EXTERNAL声明一个表为外部表
  • 使用示例
CREATE EXTERNAL TABLE rowtest(row int);
  • 与内部表区别
    • 内部表数据由Hive自身管理,外部表数据由HDFS管理;
    • 删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除;
    • 对内部表的修改会将修改直接同步给元数据,而对外部表的表结构和分区进行修改,则需要修复(MSCK REPAIR TABLE table_name;)

5. LOCATION

  • 功能说明:指定表的存储位置。
  • 注意
    • 内部表可以不指定改参数,内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse)
    • 外部表数据的存储位置由自己制定;

删除表

1. 删除语句

DROP TABLE [IF EXISTS] table_name [PURGE];
PURGE: 直接删除,不移入回收站

2. 注意事项

  • 如果.Trash/Current配置,且PURGE未指定时,该语句删除时会将该表放入.Trash/Current 目录

例子

内部表

假定HDFS文件/zpy/test/hive/i_row.txt文件格式如下:

abc,zhao-py
qwe,zh-wei
  • 建立内部表
# 以下可用
create table zhaopy.irowtest(
    word string,
    love array
) 
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '-'
LOCATION '/zpy/hive/i';
  • 加载内部表数据

load命令会将文件移动到rowtest指定的存储位置.

load data inpath '/zpy/test/hive/i_row.txt' into table zhaopy.irowtest;
  • 查看内部表数据
hive> select * from zhaopy.irowtest;
OK
abc     ["zhao","py"]
qwe     ["zh","wei"]
Time taken: 0.125 seconds, Fetched: 2 row(s)

外部表

假定HDFS文件/zpy/test/hive/f_row.txt文件格式如下:

abc,zhao-py
qwe,zh-wei
  • 建立外部表
# 以下可用
create EXTERNAL table zhaopy.frowtest(
    word string,
    love array
) 
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '-'
LOCATION '/zpy/hive/f';
  • 加载外部表数据

load命令会将文件移动到rowtest指定的存储位置.

load data inpath '/zpy/test/hive/f_row.txt' into table zhaopy.frowtest;
  • 查看外部表数据
hive> select * from zhaopy.frowtest;
OK
abc     ["zhao","py"]
qwe     ["zh","wei"]
Time taken: 0.125 seconds, Fetched: 2 row(s)

查看两个表存储位置

[ochadoop@server7 hivetest]$ hadoop fs -ls /zpy/hive/i
Found 1 items
-rwxrwxrwx   3 ochadoop ochadoop         23 2018-09-04 16:44 /zpy/hive/i/i_row.txt
[ochadoop@server7 hivetest]$ hadoop fs -ls /zpy/hive/f
Found 1 items
-rwxrwxrwx   3 ochadoop ochadoop         23 2018-09-04 16:44 /zpy/hive/f/f_row.txt

删除两个表,查看两者存储位置的文件是否一并被删除

  • 删除表
drop table zhaopy.irowtest;
drop table zhaopy.frowtest;
  • 查看目录
[ochadoop@server7 hivetest]$ hadoop fs -ls /zpy/hive/i
ls: `/zpy/hive/i': No such file or directory
[ochadoop@server7 hivetest]$ hadoop fs -ls /zpy/hive/f
Found 1 items
-rwxrwxrwx   3 ochadoop ochadoop         23 2018-09-04 16:44 /zpy/hive/f/f_row.txt

此处存在一个问题,collection与map keys同时定义出错,原因未知

表的修改

1. 表级别的修改

  • 表的重命名
ALTER TABLE table_name RENAME TO new_table_name;
  • 表的元数据添加/修改
ALTER TABLE table_name SET TBLPROPERTIES table_properties;

table_properties:
  : (property_name = property_value, property_name = property_value, ... )

元数据分为用户自定义和hive预定义两种,系统预定义见:系统预定义。Hive元数据见:Hive元数据,hive元数据的概念及其查看见:Hive元数据概念及其查看

  • 表的序列化/反序列化修改
ALTER TABLE table_name [PARTITION partition_spec] SET SERDE serde_class_name [WITH SERDEPROPERTIES serde_properties];

ALTER TABLE table_name [PARTITION partition_spec] SET SERDEPROPERTIES serde_properties;

serde_properties:
  : (property_name = property_value, property_name = property_value, ... )
// 使用举例:更改数据库表的字段分隔符
ALTER TABLE table_name SET SERDEPROPERTIES ('field.delim' = ',');
  • 表的存储属性修改
ALTER TABLE table_name CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name, ...)]
  INTO num_buckets BUCKETS;

表的分区修改


表的列级修改

  • 列的更改
    用法与SQL中的相似。使用例子摘自官网
ALTER TABLE table_name [PARTITION partition_spec] CHANGE [COLUMN] col_old_name col_new_name column_type
  [COMMENT col_comment] [FIRST|AFTER column_name] [CASCADE|RESTRICT];

// example 
CREATE TABLE test_change (a int, b int, c int);

// First change column a's name to a1.
ALTER TABLE test_change CHANGE a a1 INT;

// Next change column a1's name to a2, its data type to string, and put it after column b.
ALTER TABLE test_change CHANGE a1 a2 STRING AFTER b;
// The new table's structure is:  b int, a2 string, c int.

// Then change column c's name to c1, and put it as the first column.
ALTER TABLE test_change CHANGE c c1 INT FIRST;
// The new table's structure is:  c1 int, b int, a2 string.

// Add a comment to column a1
ALTER TABLE test_change CHANGE a1 a1 INT COMMENT 'this is column a1';
  • 列的添加或替换
ALTER TABLE table_name 
  [PARTITION partition_spec]                 -- (Note: Hive 0.14.0 and later)
  ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...)
  [CASCADE|RESTRICT]                         -- (Note: Hive 1.1.0 and later)

使用示例

// 给student表添加一个新列class
ALTER TABLE student ADD COLUMNs (class string COMMENT 'class');
// 由于hive无法针对列进行删除,因此我们采用replace替换。
// 假若原始表有三个字段,按顺序为id-name-class,假设我们要删除name,并替换id与class位置,可以使用如下SQL
ALTER TABLE student REPLACE COLUMNS (class string, id int);

你可能感兴趣的:(Hive)