自适应性神经网络(Adaline)——Python实现

自适应性神经网络(Adaline)——Python实现_第1张图片

Python代码实现:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

class AdalineGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ----------
    eta : float
        Learing rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    ----------
    w_ :  1d-array
        Weights after fitting.
    errors_ : list
        Nuber of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=50):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors,
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y-output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta*errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)



自适应性神经网络(Adaline)——Python实现_第2张图片

Python代码实现:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from numpy.random import seed

class AdalineSGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ----------
    eta : float
        Learing rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    ----------
    w_ :  1d-array
        Weights after fitting.
    errors_ : list
        Nuber of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
        self.eta = eta
        self.n_iter = n_iter
        self.w_initialized = False
        self.shuffle = shuffle
        if random_state:
            seed(random_state)

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors,
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values

        Returns
        -------
        self : object

        """
        self._initialize_weight(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            if self.shuffle:
                X, y = self._shuffle(X, y)
                cost = []
                for xi, target in zip(X, y):
                    cost.append(self._update_weights(xi, target))
                avg_cost = sum(cost)/len(y)
                self.cost_.append(avg_cost)
        return self

    def partial_fit(self, X, y):
        if not self.w_initialized:
            self._initialize_weights(X.shape[1])
        if y.ravel().shape[0] > 1:
            for xi, target in zip(X, y):
                self._update_weights(xi, target)
        else:
            self._update_weights(X, y)
        return self

    def _shuffle(self, X, y):
        r = np.random.permutation(len(y))
        return X[r], y[r]

    def _initialize_weights(self, m):
        self._w = np.zeros(1+m)
        self.w_initialized = True

    def _update_weight(self, xi, target):
        output = self.net_input(xi)
        error = (target - output)
        self.w_[1:] += self.eta * xi.dot(error)
        self.w_[0] += self.eta * error
        cost = 0.5*error**2
        return cost

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)



你可能感兴趣的:(机器学习,Python)