AI医疗--概念,应用场景及现状解析

前言:针对现在人工智能的火热,以及其在医疗行业的渗透,我收集了一些AI+医疗的最新资讯,并整理成本篇。

什么是AI+医疗?

AI医疗是以互联网为依托,通过基础设施的搭建及数据的收集,将人工智能技术及大数据服务应用于医疗行业中,提升医疗行业的诊断效率及服务质量,更好的解决医疗资源短缺、人口老龄化的问题。

AI医疗金字塔

AI医疗--概念,应用场景及现状解析_第1张图片

  • 基础层:通过软/硬件等基础设施,收集用户、药物及病理数据,并使数据互通互联,为人工智能的应用提供支持与可能。
  • 技术层:通过语音/语义识别、计算机视觉等技术,对非结构化数据进行分析和提炼;“学习”病理学数据文本,掌握问答、判断、预警、实施等能力。
  • 应用层:是指人工智能与不同细分领域的结合,以解决医疗行业中的某种业务需求,如智能诊断、药物研发、智能健康管理、智能语音等医疗场景。

国内投资现状

目前,国内资本多布局虚拟助手、医疗影像、医用机器人、智能健康管理这四个领域。
AI医疗--概念,应用场景及现状解析_第2张图片

AI+医疗深度原因分析

1、政策推动
AI政策持续利好。2017年7月国务院印发《新一代人工智能发展规划的通知》,其中明确提出“到2020年人工智能总体技术和应用与世界先进水平同步 ”。
医疗政策持续利好。2016年国务院发布《关于促进医药产业健康发展的指导意见》,明确提出开展智能医疗服务。
2、国情推动
社会进步和人们健康意识的渐渐觉醒,人口老龄化问题的加剧;病患多、医生少;医务人员培养成本过高;药物研发周期长、费用高;医生诊断不容犯错。

AI医疗--概念,应用场景及现状解析_第3张图片3、技术推动
语音和图像识别技术已达到商业化水平。 深度学习在图像的分类与识别上已经取得了非常大的进展,在医疗影像领域目前对某些病理图片的识别准确率已超过90%,可以用于辅助医生诊断。三大AI技术基石:深度学习算法+计算能力+大数据,为AI融入医疗奠定基础。
4、设备驱动
电子胶片的普及;大量可穿戴设备及胶片的投入使用,形成庞大的用户病理数据,为构建医疗大脑奠定基础。
5、基础设施驱动
超过60%的医院都已完成医院管理信息系统(hmis)的全面搭建。

AI+医疗的应用场景

从全球创业公司的情况来看,AI医疗的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理、可穿戴设备以及其他。

(1)医疗机器人

机器人技术在医疗领域的应用并不少见,比如智能假肢、外骨骼和辅助设备等技术修复人类受损身体,医疗保健机器人辅助医护人员的工作等 。目前实践中的医疗机器人主要有两种:
一是,能够读取人体神经信号的可穿戴型机器人,也成为“智能外骨骼”;
二是,能够承担手术或医疗保健功能的机器人,以IBM开发的达·芬奇手术系统为典型代表。

(2)智能药物研发

智能药物研发是指通过大数据分析等技术快速、准确地挖掘和筛选出合适的化合物,缩短新药研发周期、降低新药研发成本、提高新药研发成功率。人工智能通过计算机模拟,可以对药物活性、安全性和副作用进行预测。借助深度学习,人工智能已在心血管药、抗肿瘤药和常见传染病治疗药等多领域取得了新突破。 案例: 以硅谷公司Atomwise为例:Atomwise通过IBM超级计算机,在分子结构数据库中筛选治疗方法,评估出 820 万种候选化合物,研发成本仅为数千美元,研究周期仅需要几天。2015 年,Atomwise基于现有的候选药物,应用 AI 算法,不到一天时间就成功地寻找出能控制埃博拉病毒的两种候选药物,以往类似研究需要耗时数月甚至数年时间。

(3)智能诊疗

智能诊疗就是将人工智能技术用于辅助诊疗中,让计算机“学习”专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。智能诊疗场景是人工智能在医疗领域最重要、也最核心的应用场景。 案例: Babylon 开发的在线就诊 AI 系统,能够基于用户既往病史与用户和在线 AI 系统对话时所列举的症状,给出初步诊断结果和具体应对措施;远程用药提醒服务,AiCure 是一家帮助用户按时用药的智能健康服务公司—通过手机终端,帮助医生知晓,并提醒患者的用药,降低因不按时吃药导致复发的风险。

(4)智能健康管理

智能健康管理是将人工智能技术应用到健康管理的具体场景中。目前主要集中在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。 案例: Alme Health Coach,针对慢病病人,基于可穿戴设备、智能手机、电子病历等多渠道数据的整合,综合评估病人的病情,提供个性化健康管理方案,帮助病人规划日常健康安排,监控睡眠,提供药物和测试提醒。又如,AiCure 通过智能手机摄像头获取用户信息,结合 AI 技术确认病人的服药依从性。

(5)智能影像识别

智能医学影像是将人工智能技术应用在医学影像的诊断上。人工智能在医学影像应用主要分为两部分: 一是图像识别,应用于感知环节,其主要目的是将影像进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握诊断能力。
“医学影像”应用场景下,主要运用计算机视觉技术解决以下三种需求:
1、病灶识别与标注:针对医学影像进行图像分割、特征提取、定量分析、对比分析等工作;
2、靶区自动勾画与自适应放疗:针对肿瘤放疗环节的影像进行处理;
3、影像三维重建:针对手术环节的应用。
案例
贝斯以色列女执事医学中心( BIDMC )与哈佛医学院合作研发的人工智能系统,对乳腺癌病理图片中癌细胞的识别准确率能达到 92%,虽然还是低于人类病理学家 96% 的准确率,但当这套技术与病理学家的分析结合在一起时,它的诊断准确率可以高达 99.5%,国内的DeepCare 对于乳腺癌细胞识别的准确率也达到了 92%。据悉尼先驱晨报的报道,Enlitic 凭借深度学习技术超越了4位顶级的放射科医生,包括诊断出了人类医生无法诊断出的 7%的癌症,以及在人类医生高达 66%的癌症误诊率的情况下,Enlitic 的误诊率只有 47%。
下图是国内的一些AI+医疗的企业布局 AI医疗--概念,应用场景及现状解析_第4张图片

AI+医疗,医生有话说

上面说的是AI+医疗的基本应用及现状,下面说一说AI+医疗在医生眼里的样子。
目前各路资本玩家相继入场,AI医疗产品处于科研摸索期。相对于蜂拥而入的AI公司,愿意参与进来并且拥有丰富经验的医生专家是更加稀缺的资源。下面是雷锋网采访广东省人民医院放射科刘再毅教授的谈话录:

「你让我写代码,这不是见鬼吗?」

在我们科室,目前还没有智能诊断系统这样的东西。目前确实有很多产品在往临床上推。但智能影像方面,目前国内还没有一款很成熟的产品。之前,媒体有报道一些产品在医院落地,我打听过一些,医生的评价也不是很好。也就是说,智能影像诊断方面还没有一个好的落地应用案例。

很多公司的产品交互很差,用起来非常繁琐。他们工科会说,我写两行代码就可以搞定了。你让我写代码,这不是见鬼吗?所以工科思维一定要转变,深入到临床一线,看我们究竟需要什么。

至于数据方面,影像只是很小一方面,我做影像也发了很多文章,但不觉得影像是最重要的,换言之,影像虽然重要,但不是唯一,要结合其他临床信息。我们做信息挖掘时,要结合病人的基因、病理、血液实验室检查等信息。比如病人在ICU,还会考虑结合患者心电图检测信息、电解质、血氧饱和度等诸多动态信息。

目前,很多公司只做图像识别、筛查,大部分集中在肺部,为什么?因为肺有天然的对比,大家都挑了一个容易攻克的方向做。虽然在临床中确实可能减少一些工作量,但这是很小的应用场景。

以肺癌为例,我们平常在医院看到的很多病例,大部分是复查的,一些三期、四期病人的肺部有很多转移灶,合并渗出、肺不张等,计算机方法很难实现自动对比,一定要人工对比,如果计算机看完还需要医生重新确认一遍,还不如自己看呢。至于很小的肺结节,医学界有个指南,建议了怎么处理,比如发现之后,3个月、半年分别复查;根据倍增时间多久等情况判断是恶性还是良性?不可能刚发现肺结节就做手术的,这不得了。

肺结节筛查是很好的开始,但目前还有很多问题,系统可以有假阳性,可以误判,这可以由医生来把关,但漏病灶的后果是很严重的。最重要的是,如何得到监管部门的认可?国家批准之后,其临床应用的责任才能理清,否则出了问题,谁来负责任?计算机?还是批准软件的人?还是采购的人?还是医生?

另外,病人就诊时,肺结节检出只是临床诊疗过程很小的一部分。我们看一个胸部的片子,看了肺之后,还要看淋巴结、骨格等,很多公司的系统只能检出肺结节。患者来医院就诊,如果医生只是把肺结节检测结果给他,没有报告同一份影像图像其他合并的影像诊断,是要负责任的,因为在临床上做检查偶然发现肿瘤也是常见的。

所以,这种系统用在体检中心还可以,但体检中心的市场能有多大?

说实在的,我还找不到与AI公司合作的方式

做医学图像挖掘,医生与AI创业公司的合作是必不可少的,但一定要以医生为主导来做,公司负责后续的产品化。其中最关键在于:要解决什么样的临床问题。

我是做研究的,思路与公司可能不太一样,双方都是要提升诊断率,差异就在于具体聚焦在什么地方?科研解决的是悬而未决的问题,而AI公司是要打造一个产品解决实际问题,双方目标不一样,我觉得很多东西不是想象的那么简单。

从科研的角度来讲,目的在于提出一个临床假设,并证明。比如我想通过影像数据挖掘判断某种疾病的愈后好不好或判断疗效,在这种情况下,我会搜集病例,用某些方法验证,最后得到一个结果。至于结果如何,我们并不知道,创业者的想法跟我们肯定完全不一样。

有公司找我合作,说实在的,我还找不到合适的方式,如果要合作,一定是深入的交流,其中需要有人起到桥梁、翻译的作用。比如深度学习的很多概念我们临床医生搞不懂,但同时工科的人也多半不懂什么叫预后,甚至不知道这样做的意义何在。

医学上很多问题和其他领域不一样,比如阿里要调研用户的购买习惯,这种数据多得不得了,但医学上很多疾病数据很少,一个单位可能仅有一两百病例符合标准。我想没有一家医院敢说有几千例这样的复合标准的图像。我们医院有数万病例,但基于不同的疾病、检查方式、研究目的区分之后,数据一下子就变得很少了。

工业界和学术界的合作,对双方都有很高的要求:一是有共同的目标;二是有很好的合作机制,协调如何把利益最大化;三是双方团队质量很重要,缺一不可。

如果我与创业公司合作,最关心的他们的人员构成和数据来源。

做医学数据挖掘,一定要有医疗背景的专家,他能起到桥梁作用,把临床问题转换为技术问题,让IT团队实现;同时,做技术的没有接触过医学,可能不明白人体分为几个系统、每个系统由什么组成、有哪些脏器,更不要说疾病了。我知道很多医院做的事情是把数据提供给公司,这个方法确实可行。但如果要真正挖掘,一定要深入,不是一方简单地提供数据,一方简单地提供算法,双方直接应该有深度的交流、沟通,共同发现问题,解决问题。

国内最常见的合作方式是医院提供数据,公司来分析,双方共享成果或是公司卖软件给医院。但我认为这样的合作不长久,目标不同,长期以往,估计会分道扬镳。我觉得目前的合作,肯定得以医生为主导,靠医生发现临床问题。但跟创业公司这么说,他们肯定不乐意,我的算法很先进,凭什么你做主导?所以我不是很愿意跟他们合作,我们自己有团队,我们团队做的东西在国际上是某些研究方面是很靠前的。如果我们没有团队,也没办法。除此之外,我也考虑过,跟创业公司合作,他们是否愿意配几个人给我,专门负责某个项目,我想这是不可能的事情,怎么可能呢?

还有的医院与公司合作打造出的产品,以专利授权的形式给了公司,这对医生有吸引力,但我没尝试过,没想过转化,这样很分散精力。我关心的是公司有没有好的范例,医生是否真正获得了收益,无论是以股份、顾问费等形式。但公司愿意给吗?

创业公司很难请到一个真正专业的医学人士,去了以后怎么做项目?除非公司能跟十几、二十多家医院合作了一个临床设计,但仅把各个项目的医学语言翻译成工科语言,工作量就相当大;其次,医生如何在里面起到真正的作用,这是很难定义的。

虽然现在市面上有AI公司与医生合作做一些事情,但在大部分情况下,他们的研究是小规模研究,但应用到临床的东西,需要前瞻的多中心试验验证,这是一个很漫长的过程。况且,图像只是很小一方面,只有深入去做,潜心做临床研究,才有可能得到好的结果。

「单从软件应用角度讲,我们开发的比他们还好用

现在的AI公司都在拼算法,虽无可厚非,但如果没有实际的或重要的原创目的,这个算法有什么用呢?

我们平常的研究,关键在于临床设计,要以临床研究的方法来设计和评价应用,因为临床研究要有符合临床的研究标准,算法再先进,没有数据支撑,没有好的验证也是很难发好文章的。今年《Nature》和《JAMA》发了两篇AI医疗相关文章,一个是眼底病相关的,一个是做皮肤病的,虽然都用到了深度学习算法,但并不是多先进的技术,它们的特点在于数量大,有十几万个病例的数据。

我们最近在做肺癌、结直肠癌等几个肿瘤的研究,关注疗效评估方面,预测预后效果,评价治疗方案好不好。如果有明确的问题和高质量的数据,需要算法把有用信息挖掘出来,这种情况下,算法能起到重要的作用。实际上,有时候我们并不需要很炫的算法,常规的方法就能解决问题。

在我们的项目中,用到的还是传统的统计学方法,也借鉴了一些数据挖掘技术,比如深度学习。与创业公司不太一样的是,我们关注更偏临床目的,基于这个问题,再去组织材料、找方法,创业公司想做的是产品,比如做病灶的检出,但对于我们组来说检出没有任何价值,因为发不了好的paper。

我们的算法能力不及创业公司,我对于学生的要求就是用成熟的技术,进行二次研发、创新之后应用,目的只有一个,就是解决我们的问题。我可以说我们组的文章质量和数量算是有一定地位的,单从影像因子来说,我们发表在《临床肿瘤杂志》的文章是目前为止,全球范围内影响因子最高的,并且还是发表于临床肿瘤领域的顶级期刊,得到临床的认可,因此我们的研究很有自己的特色。

我认为很多智能医疗公司的产品是华而不实的。单从软件的应用角度看,我们开发的比他们的还好用,但是确实没有他们界面做得炫,我的目的不是为了卖产品,而是为了好用。

有些公司说他们有一千个特征,我吹牛说我有一万个特征、两万个特征都可以,目前,我们研发了一个新特征,这是影像组学界没有报道过,是我们借鉴了信息学领域的一些理论、概念,移植到医学领域,这是我们自己的创新。

我们做研究的动力来源于喜欢,这与公司完全不一样,当然我也想发更多更好的文章,但没那么急,我没有压力去变现,不会很激进地做事情,即使做不好也不影响我的生存。有些创业公司拿到几千万、几亿的风投,一下子得到那么多钱,我也很羡慕,但我现阶段没有这样的实力,也没有这样的想法。说不定有一天,我的团队强大了,我也会去创业。

「医疗数据非常稀缺,非常宝贵

我在研究过程中发现:影像数据的质量和数量很难兼顾,很难找到满足要求的数据。除此之外,还要结合病人的其他信息来判断,比如实验室检测、病理标本等,这更是增加了难度。

我们现在做的一个项目,需要一些临床检测项目数据,像基因、血液等相关检查数据,预计能拿到500~600例可用的数据,但投入起码是上百万,这需要科研基金来支撑,医院和病人都不可能负担这个成本。

正因为难以获取基因、病理等方面数据,所以一大波创业公司才蜂拥进入影像领域,他们的很多研究是基于影像信息判断和推断基因、病理和临床信息情况,这是一种可行的方式,但还是需要很多数据去验证。

医疗数据非常稀缺,非常宝贵。

现在很多医院的PACS系统做得很好,尽管存在影像标准化的问题,至少有图像,但很多数据是没有的,比如病人做了检查、手术、治疗之后走掉了,没有完整的随访机制,没有后续数据评估临床疗效和预后等数据。我们自己做研究,要花很大力气搜集整理这些数据。

除此之外,数据质控也很关键。比如,通过电话随访,如果病人电话号码变了,他就联系不到了;还有就是打电话随访的信息准确性问题,随访的信息有很多方面,比如肿瘤手术之后,有无复发?有没有死亡?化疗有没有进展?死亡的时间很明确,99%的亲人都记得,但有无进展是不好评估的。另外,每个随访工作人员的态度也影响随访质量。许多污染数据对我们不但没有意义,还有害处。

医疗数据不是那么简单的,不是挖掘一个点,而是很多方面。不像购物,调查消费者的购物习惯时,看其买了什么东西,价格多少,什么时候买的?数据很明确,也很容易找到。但医疗数据很多是不确定的,很难打通,这种情况下,具备完整信息的病人资料就尤其宝贵。

我感觉,医院能用的数据比例很小。判断数据是否有价值主要取决于具体研究目的。拿肺癌或其他肿瘤来说,在大医院,满足要求的可能只有10%~20%,这已经算不错的了;在二甲等地方医院,很多病人做了检查之后,去上级医院看病去了,有完整资料的病人可能只有1%~2%。

「一来就想上临床,对生命太不尊重了」

智能影像诊断还有非常长的路要走。

要真正应用在临床,要解决它的精度、实用范围和政策等问题,如果要政策批准,必须经过临床试验验证,耗资会很巨大。

我个人感觉,创业公司除了定位于肺结节检出等临床应用外,搭建科研平台也是不错的选择,要是我自己开公司,我就会这样做,帮助医生做科研的市场也不小,可以共同申请基金来维持,我知道有些创业公司就在合作申请基金。如果数据积累多了,再考虑做临床转化,像Watson这样的,这样才可能逐步走向临床。很多公司一来就想到临床,对生命太不尊重了,如果仅靠靠几百、几千例数据就取得了批准,我肯定不敢用这样的产品。

我个人觉得,医疗人工智能还非常漫长,目前无疑是过火的。

总结:

结合AI+医疗的现状和现有政策,未来这将是一个很有前景的市场,当然,新的市场必然也会存在各种各样的问题需要去解决,所以不盲目,积极探索,重视投入,将会在这个领域取得一定的成绩。

文末,在http://download.csdn.net/download/piaoxuezhong/10132037中上传了一份2017年亿欧智库出具的人工智能医疗行业报告,感兴趣的可以下载来看。

参考:

http://www.cn-healthcare.com/article/20170305/content-490235.html
http://www.cn-healthcare.com/article/20170831/content-495331.html
http://cio.51cto.com/art/201704/536931.htm
https://www.leiphone.com/news/201708/AUj783xBLSXjuMYB.html
http://36kr.com/p/5090544.html

你可能感兴趣的:(医疗影像)